Department of Biomedical Engineering, Hamedan University of Technology, Hamedan, Iran.
Comput Math Methods Med. 2022 Aug 11;2022:2014001. doi: 10.1155/2022/2014001. eCollection 2022.
Accurate and early diagnosis of mild cognitive impairment (MCI) is necessary to prevent the progress of Alzheimer's and other kinds of dementia. Unfortunately, the symptoms of MCI are complicated and may often be misinterpreted as those associated with the normal ageing process. To address this issue, many studies have proposed application of machine learning techniques for early MCI diagnosis based on electroencephalography (EEG). In this study, a machine learning framework for MCI diagnosis is proposed in this study, which extracts spectral, functional connectivity, and nonlinear features from EEG signals. The sequential backward feature selection (SBFS) algorithm is used to select the best subset of features. Several classification models and different combinations of feature sets are measured to identify the best ones for the proposed framework. A dataset of 16 and 18 EEG data of normal and MCI subjects is used to validate the proposed system. Metrics including accuracy (AC), sensitivity (SE), specificity (SP), F1-score (F1), and false discovery rate (FDR) are evaluated using 10-fold crossvalidation. An average AC of 99.4%, SE of 98.8%, SP of 100%, F1 of 99.4%, and FDR of 0% have been provided by the best performance of the proposed framework using the linear support vector machine (LSVM) classifier and the combination of all feature sets. The acquired results confirm that the proposed framework provides an accurate and robust performance for recognizing MCI cases and outperforms previous approaches. Based on the obtained results, it is possible to be developed in order to use as a computer-aided diagnosis (CAD) tool for clinical purposes.
准确和早期诊断轻度认知障碍 (MCI) 对于预防阿尔茨海默病和其他类型的痴呆症的进展是必要的。不幸的是,MCI 的症状很复杂,并且常常可能被误解为与正常衰老过程相关的症状。为了解决这个问题,许多研究已经提出了基于脑电图 (EEG) 的机器学习技术在早期 MCI 诊断中的应用。在本研究中,提出了一种用于 MCI 诊断的机器学习框架,该框架从 EEG 信号中提取光谱、功能连接和非线性特征。使用顺序后向特征选择 (SBFS) 算法选择最佳特征子集。测量了几种分类模型和不同的特征集组合,以确定最适合提出的框架的模型。使用 16 个和 18 个正常和 MCI 受试者的 EEG 数据数据集来验证所提出的系统。使用 10 折交叉验证评估包括准确性 (AC)、灵敏度 (SE)、特异性 (SP)、F1 分数 (F1) 和错误发现率 (FDR) 在内的指标。使用线性支持向量机 (LSVM) 分类器和所有特征集的组合,提出的框架提供了平均 AC 为 99.4%、SE 为 98.8%、SP 为 100%、F1 为 99.4%和 FDR 为 0%的最佳性能,从而提供了准确和稳健的性能,用于识别 MCI 病例,并优于以前的方法。基于所获得的结果,有可能开发出用于临床目的的计算机辅助诊断 (CAD) 工具。