Suppr超能文献

基于多重分形分析和相关向量机的颅内脑电图癫痫自动检测

Multifractal Analysis and Relevance Vector Machine-Based Automatic Seizure Detection in Intracranial EEG.

作者信息

Zhang Yanli, Zhou Weidong, Yuan Shasha

机构信息

School of Information Science and Engineering, Shandong University, Jinan 250100, P. R. China.

School of Information and Electronics Engineering, Shandong Institute of Business and Technology, Yantai 264005, P. R. China.

出版信息

Int J Neural Syst. 2015 Sep;25(6):1550020. doi: 10.1142/S0129065715500203. Epub 2015 Apr 7.

Abstract

Automatic seizure detection technology is of great significance for long-term electroencephalogram (EEG) monitoring of epilepsy patients. The aim of this work is to develop a seizure detection system with high accuracy. The proposed system was mainly based on multifractal analysis, which describes the local singular behavior of fractal objects and characterizes the multifractal structure using a continuous spectrum. Compared with computing the single fractal dimension, multifractal analysis can provide a better description on the transient behavior of EEG fractal time series during the evolvement from interictal stage to seizures. Thus both interictal EEG and ictal EEG were analyzed by multifractal formalism and their differences in the multifractal features were used to distinguish the two class of EEG and detect seizures. In the proposed detection system, eight features (α0, α(min), α(max), Δα, f(α(min)), f(α(max)), Δf and R) were extracted from the multifractal spectrums of the preprocessed EEG to construct feature vectors. Subsequently, relevance vector machine (RVM) was applied for EEG patterns classification, and a series of post-processing operations were used to increase the accuracy and reduce false detections. Both epoch-based and event-based evaluation methods were performed to appraise the system's performance on the EEG recordings of 21 patients in the Freiburg database. The epoch-based sensitivity of 92.94% and specificity of 97.47% were achieved, and the proposed system obtained a sensitivity of 92.06% with a false detection rate of 0.34/h in event-based performance assessment.

摘要

自动癫痫发作检测技术对于癫痫患者的长期脑电图(EEG)监测具有重要意义。这项工作的目的是开发一种高精度的癫痫发作检测系统。所提出的系统主要基于多重分形分析,该分析描述了分形对象的局部奇异行为,并使用连续谱来表征多重分形结构。与计算单一分形维数相比,多重分形分析能够更好地描述脑电图分形时间序列在从发作间期到发作演变过程中的瞬态行为。因此,通过多重分形形式对发作间期脑电图和发作期脑电图进行分析,并利用它们在多重分形特征上的差异来区分这两类脑电图并检测癫痫发作。在所提出的检测系统中,从预处理脑电图的多重分形谱中提取八个特征(α0、α(min)、α(max)、Δα、f(α(min))、f(α(max))、Δf和R)来构建特征向量。随后,应用相关向量机(RVM)进行脑电图模式分类,并使用一系列后处理操作来提高准确性并减少误检测。基于时段和基于事件的评估方法均被用于评估该系统在弗莱堡数据库中21名患者的脑电图记录上的性能。基于时段的灵敏度达到了92.94%,特异性达到了97.47%,并且在所提出的系统在基于事件的性能评估中获得了92.06%的灵敏度和0.34/h的误检测率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验