Institute of Chemistry, Chair of Macromolecular Chemistry, Faculty of Natural Sciences II, Martin-Luther University Halle-Wittenberg, von Danckelmann-Platz 4, 06120 Halle (Saale) (Germany).
Angew Chem Int Ed Engl. 2015 Nov 16;54(47):13918-22. doi: 10.1002/anie.201505678. Epub 2015 Sep 30.
"Click" chemistry represents one of the most powerful approaches for linking molecules in chemistry and materials science. Triggering this reaction by mechanical force would enable site- and stress-specific "click" reactions--a hitherto unreported observation. We introduce the design and realization of a homogeneous Cu catalyst able to activate through mechanical force when attached to suitable polymer chains, acting as a lever to transmit the force to the central catalytic system. Activation of the subsequent copper-catalyzed "click" reaction (CuAAC) is achieved either by ultrasonication or mechanical pressing of a polymeric material, using a fluorogenic dye to detect the activation of the catalyst. Based on an N-heterocyclic copper(I) carbene with attached polymeric chains of different flexibility, the force is transmitted to the central catalyst, thereby activating a CuAAC in solution and in the solid state.
点击化学是将分子连接在化学和材料科学中的最强大的方法之一。通过机械力触发这种反应将能够实现位点和应力特异性的“点击”反应——这是迄今为止尚未报道的观察结果。我们介绍了一种均相 Cu 催化剂的设计和实现,当附着在合适的聚合物链上时,该催化剂能够通过机械力激活,充当将力传递到中心催化系统的杠杆。随后的铜催化的“点击”反应(CuAAC)的激活是通过超声处理或机械压碎聚合物材料来实现的,使用荧光染料来检测催化剂的激活。基于带有不同柔性聚合物链的 N-杂环铜(I)卡宾,力被传递到中心催化剂,从而在溶液中和固态中激活 CuAAC。