Rudie Jeffrey D, Colby John B, Salamon Noriko
David Geffen School of Medicine at UCLA, United States.
David Geffen School of Medicine at UCLA, United States; Department of Radiology, Ronald Reagan Hospital, UCLA, United States.
Epilepsy Res. 2015 Nov;117:63-9. doi: 10.1016/j.eplepsyres.2015.09.005. Epub 2015 Sep 9.
Novel approaches applying machine-learning methods to neuroimaging data seek to develop individualized measures that will aid in the diagnosis and treatment of brain-based disorders such as temporal lobe epilepsy (TLE). Using a large cohort of epilepsy patients with and without mesial temporal sclerosis (MTS), we sought to automatically classify MTS using measures of cortical morphology, and to further relate classification probabilities to measures of disease burden.
Our sample consisted of high-resolution T1 structural scans of 169 adults with epilepsy collected across five different 1.5T and four different 3T scanners at UCLA. We applied a multiple support vector machine recursive feature elimination algorithm to morphological measures generated from FreeSurfer's automated segmentation and parcellation in order to classify Epilepsy patients with MTS (n=85) from those without MTS (N=84).
In addition to hippocampal volume, we found that alterations in cortical thickness, surface area, volume and curvature in inferior frontal and anterior and inferior temporal regions contributed to a classification accuracy of up to 81% (p=1.3×10(-17)) in identifying MTS. We also found that MTS classification probabilities were associated with a longer duration of disease for epilepsy patients both with and without MTS.
In addition to implicating extra-hippocampal involvement of MTS, these findings shed further light on the pathogenesis of TLE and may ultimately assist in the development of automated tools that incorporate multiple neuroimaging measures to assist clinicians in detecting more subtle cases of TLE and MTS.
将机器学习方法应用于神经影像数据的新方法旨在开发个性化测量指标,以辅助诊断和治疗诸如颞叶癫痫(TLE)等基于脑的疾病。我们利用一大群有和没有内侧颞叶硬化(MTS)的癫痫患者,试图使用皮质形态测量指标自动对MTS进行分类,并进一步将分类概率与疾病负担测量指标相关联。
我们的样本包括169名成年癫痫患者的高分辨率T1结构扫描图像,这些图像是在加州大学洛杉矶分校的五台不同的1.5T和四台不同的3T扫描仪上采集的。我们将多支持向量机递归特征消除算法应用于由FreeSurfer自动分割和分区生成的形态测量指标,以便将患有MTS的癫痫患者(n = 85)与未患有MTS的患者(N = 84)进行分类。
除了海马体积外,我们发现额叶下部以及颞叶前部和下部的皮质厚度、表面积、体积和曲率的改变在识别MTS时的分类准确率高达81%(p = 1.3×10(-17))。我们还发现,MTS分类概率与患有和未患有MTS的癫痫患者的疾病持续时间较长有关。
除了表明MTS存在海马体外受累情况外,这些发现进一步揭示了TLE的发病机制,并最终可能有助于开发结合多种神经影像测量指标的自动化工具,以协助临床医生检测更隐匿的TLE和MTS病例。