Department of Neurology, George Washington University, Washington, District of Columbia, USA.
Center for Neuroscience, Children's National Hospital, Washington, District of Columbia, USA.
Epilepsia. 2022 Mar;63(3):629-640. doi: 10.1111/epi.17160. Epub 2022 Jan 4.
This study was undertaken to identify shared functional network characteristics among focal epilepsies of different etiologies, to distinguish epilepsy patients from controls, and to lateralize seizure focus using functional connectivity (FC) measures derived from resting state functional magnetic resonance imaging (MRI).
Data were taken from 103 adult and 65 pediatric focal epilepsy patients (with or without lesion on MRI) and 109 controls across four epilepsy centers. We used three whole-brain FC measures: parcelwise connectivity matrix, mean FC, and degree of FC. We trained support vector machine models with fivefold cross-validation (1) to distinguish patients from controls and (2) to lateralize the hemisphere of seizure onset in patients. We reported the regions and connections with the highest importance from each model as the common FC differences between the compared groups.
FC measures related to the default mode and limbic networks had higher importance relative to other networks for distinguishing epilepsy patients from controls. In lateralization models, regions related to somatosensory, visual, default mode, and basal ganglia showed higher importance. The epilepsy versus control classification model trained using a 400-parcel connectivity matrix achieved a median testing accuracy of 75.6% (median area under the curve [AUC] = .83) in repeated independent testing. Lateralization accuracy using the 400-parcel connectivity matrix reached a median accuracy of 64.0% (median AUC = .69).
Machine learning models revealed common FC alterations in a heterogeneous group of patients with focal epilepsies. The distribution of the most altered regions supports the hypothesis that shared functional alteration exists beyond the seizure onset zone and its epileptic network. We showed that FC measures can distinguish patients from controls, and further lateralize focal epilepsies. Future studies are needed to confirm these findings by using larger numbers of epilepsy patients.
本研究旨在确定不同病因局灶性癫痫的共同功能网络特征,利用静息态功能磁共振成像(fMRI)的功能连接(FC)指标区分癫痫患者与对照者,并对癫痫灶进行定位。
本研究共纳入来自四个癫痫中心的 103 例成人和 65 例儿童局灶性癫痫患者(伴或不伴 MRI 病灶)和 109 例对照者。我们使用了三种全脑 FC 指标:分区连接矩阵、平均 FC 和 FC 程度。我们使用五折交叉验证训练支持向量机模型(1)区分患者与对照者,(2)定位患者的癫痫起始侧。我们报告了每个模型中最重要的区域和连接,以作为比较组之间共同 FC 差异的指标。
与其他网络相比,与默认模式和边缘网络相关的 FC 指标在区分癫痫患者与对照者方面具有更高的重要性。在定位模型中,与躯体感觉、视觉、默认模式和基底节相关的区域具有更高的重要性。使用 400 个分区连接矩阵训练的癫痫与对照分类模型在重复独立测试中的测试准确率中位数为 75.6%(中位数 AUC=0.83)。使用 400 个分区连接矩阵的定位准确率中位数为 64.0%(中位数 AUC=0.69)。
机器学习模型揭示了一组异质性局灶性癫痫患者的共同 FC 改变。最改变区域的分布支持这样一种假设,即共享的功能改变不仅存在于癫痫起始区及其癫痫网络内,而且还存在于其外。我们表明 FC 指标可以区分患者与对照者,并进一步定位局灶性癫痫。需要进一步的研究来证实这些发现,并使用更多的癫痫患者进行验证。