Zanette Irene, Zdora Marie-Christine, Zhou Tunhe, Burvall Anna, Larsson Daniel H, Thibault Pierre, Hertz Hans M, Pfeiffer Franz
Physik-Department and Institut für Medizintechnik, Technische Universität München, 85748 Garching, Germany; Diamond Light Source, Didcot OX11 0DE, United Kingdom;
Diamond Light Source, Didcot OX11 0DE, United Kingdom; Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom;
Proc Natl Acad Sci U S A. 2015 Oct 13;112(41):12569-73. doi: 10.1073/pnas.1502828112. Epub 2015 Sep 30.
Nondestructive microscale investigation of objects is an invaluable tool in life and materials sciences. Currently, such investigation is mainly performed with X-ray laboratory systems, which are based on absorption-contrast imaging and cannot access the information carried by the phase of the X-ray waves. The phase signal is, nevertheless, of great value in X-ray imaging as it is complementary to the absorption information and in general more sensitive to visualize features with small density differences. Synchrotron facilities, which deliver a beam of high brilliance and high coherence, provide the ideal condition to develop such advanced phase-sensitive methods, but their access is limited. Here we show how a small modification of a laboratory setup yields simultaneously quantitative and 3D absorption and phase images of the object. This single-shot method is based on correlation of X-ray near-field speckles and represents a significant broadening of the capabilities of laboratory-based X-ray tomography.
对物体进行无损微观研究是生命科学和材料科学中一项非常有价值的工具。目前,此类研究主要通过基于吸收对比成像的X射线实验室系统进行,这些系统无法获取X射线波相位所携带的信息。然而,相位信号在X射线成像中具有重要价值,因为它与吸收信息互补,并且通常对可视化具有小密度差异的特征更敏感。同步加速器设施能够提供高亮度和高相干性的光束,为开发此类先进的相敏方法提供了理想条件,但使用这些设施受到限制。在此,我们展示了如何对实验室装置进行微小修改,从而同时获得物体的定量三维吸收图像和相位图像。这种单次成像方法基于X射线近场散斑的相关性,代表了基于实验室的X射线断层扫描能力的显著扩展。