Bedez Mathieu, Belhachmi Zakaria, Haeberlé Olivier, Greget Renaud, Moussaoui Saliha, Bouteiller Jean-Marie, Bischoff Serge
Rhenovia Pharma SA, Mulhouse, France; Laboratoire LMIA, EA3993, Université de Haute Alsace, Mulhouse, France; Laboratoire MIPS, EA2332, Université de Haute Alsace, Mulhouse, France.
Laboratoire LMIA, EA3993, Université de Haute Alsace, Mulhouse, France.
J Neurosci Methods. 2016 Jan 15;257:17-25. doi: 10.1016/j.jneumeth.2015.09.017. Epub 2015 Sep 28.
The resolution of a model describing the electrical activity of neural tissue and its propagation within this tissue is highly consuming in term of computing time and requires strong computing power to achieve good results.
In this study, we present a method to solve a model describing the electrical propagation in neuronal tissue, using parareal algorithm, coupling with parallelization space using CUDA in graphical processing unit (GPU).
We applied the method of resolution to different dimensions of the geometry of our model (1-D, 2-D and 3-D). The GPU results are compared with simulations from a multi-core processor cluster, using message-passing interface (MPI), where the spatial scale was parallelized in order to reach a comparable calculation time than that of the presented method using GPU. A gain of a factor 100 in term of computational time between sequential results and those obtained using the GPU has been obtained, in the case of 3-D geometry. Given the structure of the GPU, this factor increases according to the fineness of the geometry used in the computation.
COMPARISON WITH EXISTING METHOD(S): To the best of our knowledge, it is the first time such a method is used, even in the case of neuroscience.
Parallelization time coupled with GPU parallelization space allows for drastically reducing computational time with a fine resolution of the model describing the propagation of the electrical signal in a neuronal tissue.
描述神经组织电活动及其在该组织内传播的模型的求解在计算时间方面消耗巨大,并且需要强大的计算能力才能取得良好的结果。
在本研究中,我们提出了一种方法来求解描述神经元组织中电传播的模型,该方法使用了并行实时算法,并结合图形处理单元(GPU)中使用CUDA的空间并行化。
我们将求解方法应用于模型几何结构的不同维度(1维、2维和3维)。将GPU的结果与使用消息传递接口(MPI)的多核处理器集群的模拟结果进行比较,其中空间尺度进行了并行化处理,以达到与使用GPU的所提出方法相当的计算时间。在3维几何结构的情况下,与顺序计算结果相比,使用GPU获得的计算时间提高了100倍。鉴于GPU的结构,这个倍数会根据计算中使用的几何结构的精细程度而增加。
据我们所知,即使在神经科学领域,这也是首次使用这种方法。
并行化时间与GPU空间并行化相结合,能够在精细求解描述神经组织中电信号传播的模型的同时,大幅减少计算时间。