Suppr超能文献

用于模拟心脏电生理学的GPU并行化、时空自适应算法及其组合的性能评估。

Performance evaluation of GPU parallelization, space-time adaptive algorithms, and their combination for simulating cardiac electrophysiology.

作者信息

Sachetto Oliveira Rafael, Martins Rocha Bernardo, Burgarelli Denise, Meira Wagner, Constantinides Christakis, Weber Dos Santos Rodrigo

机构信息

Departamento de Ciência da Computação, Universidade Federal de São João de Rei, São João del-rei MG, Brazil.

Departamento de Ciência da Computação e Programa em Modelagem Computacional, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil.

出版信息

Int J Numer Method Biomed Eng. 2018 Feb;34(2). doi: 10.1002/cnm.2913. Epub 2017 Aug 1.

Abstract

The use of computer models as a tool for the study and understanding of the complex phenomena of cardiac electrophysiology has attained increased importance nowadays. At the same time, the increased complexity of the biophysical processes translates into complex computational and mathematical models. To speed up cardiac simulations and to allow more precise and realistic uses, 2 different techniques have been traditionally exploited: parallel computing and sophisticated numerical methods. In this work, we combine a modern parallel computing technique based on multicore and graphics processing units (GPUs) and a sophisticated numerical method based on a new space-time adaptive algorithm. We evaluate each technique alone and in different combinations: multicore and GPU, multicore and GPU and space adaptivity, multicore and GPU and space adaptivity and time adaptivity. All the techniques and combinations were evaluated under different scenarios: 3D simulations on slabs, 3D simulations on a ventricular mouse mesh, ie, complex geometry, sinus-rhythm, and arrhythmic conditions. Our results suggest that multicore and GPU accelerate the simulations by an approximate factor of 33×, whereas the speedups attained by the space-time adaptive algorithms were approximately 48. Nevertheless, by combining all the techniques, we obtained speedups that ranged between 165 and 498. The tested methods were able to reduce the execution time of a simulation by more than 498× for a complex cellular model in a slab geometry and by 165× in a realistic heart geometry simulating spiral waves. The proposed methods will allow faster and more realistic simulations in a feasible time with no significant loss of accuracy.

摘要

如今,使用计算机模型作为研究和理解心脏电生理复杂现象的工具变得越来越重要。与此同时,生物物理过程复杂性的增加转化为复杂的计算和数学模型。为了加速心脏模拟并实现更精确和逼真的应用,传统上采用了两种不同的技术:并行计算和复杂的数值方法。在这项工作中,我们将基于多核和图形处理单元(GPU)的现代并行计算技术与基于新的时空自适应算法的复杂数值方法相结合。我们分别评估每种技术及其不同组合:多核与GPU、多核与GPU以及空间适应性、多核与GPU以及空间适应性和时间适应性。所有技术和组合都在不同场景下进行了评估:平板上的三维模拟、心室小鼠网格上的三维模拟,即复杂几何形状、窦性心律和心律失常情况。我们的结果表明,多核和GPU可将模拟速度提高约33倍,而时空自适应算法实现的加速比约为48。然而,通过结合所有技术,我们获得的加速比在165到498之间。对于平板几何形状中的复杂细胞模型,测试方法能够将模拟的执行时间减少超过498倍,对于模拟螺旋波的真实心脏几何形状,执行时间减少165倍。所提出的方法将能够在可行的时间内实现更快、更逼真的模拟,而不会显著损失精度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验