Suppr超能文献

正常和患病眼睛中的视网膜色素上皮细胞及细胞层特性

RPE Cell and Sheet Properties in Normal and Diseased Eyes.

作者信息

Rashid Alia, Bhatia Shagun K, Mazzitello Karina I, Chrenek Micah A, Zhang Qing, Boatright Jeffrey H, Grossniklaus Hans E, Jiang Yi, Nickerson John M

机构信息

Ophthalmology, Emory University, Atlanta, GA, USA.

CONICET, Universidad Nacional de Mar del Plata, 7600, Mar del Plata, Argentina.

出版信息

Adv Exp Med Biol. 2016;854:757-63. doi: 10.1007/978-3-319-17121-0_101.

Abstract

Previous studies of human retinal pigment epithelium (RPE) morphology found spatial differences in density: a high density of cells in the macula, decreasing peripherally. Because the RPE sheet is not perfectly regular, we anticipate that there will be differences between conditions and when and where damage is most likely to begin. The purpose of this study is to establish relationships among RPE morphometrics in age, cell location, and disease of normal human and AMD eyes that highlight irregularities reflecting damage. Cadaveric eyes from 11 normal and 3 age-related macular degeneration (AMD) human donors ranging from 29 to 82 years of age were used. Borders of RPE cells were identified with phalloidin. RPE segmentation and analysis were conducted with CellProfiler. Exploration of spatial point patterns was conducted using the "spatstat" package of R. In the normal human eye, with increasing age, cell size increased, and cells lost their regular hexagonal shape. Cell density was higher in the macula versus periphery. AMD resulted in greater variability in size and shape of the RPE cell. Spatial point analysis revealed an ordered distribution of cells in normal and high spatial disorder in AMD eyes. Morphometrics of the RPE cell readily discriminate among young vs. old and normal vs. diseased in the human eye. The normal RPE sheet is organized in a regular array of cells, but AMD exhibited strong spatial irregularity. These findings reflect on the robust recovery of the RPE sheet after wounding and the circumstances under which it cannot recover.

摘要

以往对人类视网膜色素上皮(RPE)形态学的研究发现,其密度存在空间差异:黄斑区细胞密度高,向周边递减。由于RPE片层并非完全规则,我们预计不同条件之间以及损伤最可能开始的时间和位置会存在差异。本研究的目的是建立正常人和年龄相关性黄斑变性(AMD)患者眼中RPE形态测量指标与年龄、细胞位置和疾病之间的关系,突出反映损伤的不规则性。使用了11名年龄在29至82岁之间的正常人类供体和3名AMD患者的尸体眼。用鬼笔环肽识别RPE细胞的边界。用CellProfiler进行RPE分割和分析。使用R语言的“spatstat”包进行空间点模式探索。在正常人眼中,随着年龄的增长,细胞大小增加,细胞失去其规则的六边形形状。黄斑区的细胞密度高于周边。AMD导致RPE细胞的大小和形状变异性更大。空间点分析显示,正常眼中细胞呈有序分布,而AMD眼中则存在高度的空间无序。RPE细胞的形态测量指标能够轻易地区分人眼中年轻与年老以及正常与患病的情况。正常的RPE片层由规则排列的细胞组成,但AMD表现出强烈的空间不规则性。这些发现反映了RPE片层受伤后的强劲恢复情况以及其无法恢复的情形。

相似文献

1
RPE Cell and Sheet Properties in Normal and Diseased Eyes.
Adv Exp Med Biol. 2016;854:757-63. doi: 10.1007/978-3-319-17121-0_101.
3
Analysis of RPE morphometry in human eyes.
Mol Vis. 2016 Jul 30;22:898-916. eCollection 2016.
5
Methodologies for analysis of patterning in the mouse RPE sheet.
Mol Vis. 2015 Jan 15;21:40-60. eCollection 2015.
7
Impaired RPE survival on aged submacular human Bruch's membrane.
Exp Eye Res. 2005 Feb;80(2):235-48. doi: 10.1016/j.exer.2004.09.006.
9
Spectral Analysis of Human Retinal Pigment Epithelium Cells in Healthy and AMD Eyes.
Invest Ophthalmol Vis Sci. 2024 Jan 2;65(1):10. doi: 10.1167/iovs.65.1.10.
10
Single-cell-resolution map of human retinal pigment epithelium helps discover subpopulations with differential disease sensitivity.
Proc Natl Acad Sci U S A. 2022 May 10;119(19):e2117553119. doi: 10.1073/pnas.2117553119. Epub 2022 May 6.

引用本文的文献

1
High-Resolution Imaging and Interpretation of Three-Dimensional RPE Sheet Structure.
Biomolecules. 2025 Jul 26;15(8):1084. doi: 10.3390/biom15081084.
2
Ferroptosis: An Energetic Villain of Age-Related Macular Degeneration.
Biomedicines. 2025 Apr 17;13(4):986. doi: 10.3390/biomedicines13040986.
3
Features that distinguish age-related macular degeneration from aging.
Exp Eye Res. 2025 May;254:110303. doi: 10.1016/j.exer.2025.110303. Epub 2025 Feb 20.
4
Productive infection of the retinal pigment epithelium by SARS-CoV-2: Initial effects and consideration of long-term consequences.
PNAS Nexus. 2024 Dec 3;3(12):pgae500. doi: 10.1093/pnasnexus/pgae500. eCollection 2024 Dec.
5
High resolution imaging and interpretation of three-dimensional RPE sheet structure.
bioRxiv. 2025 Jan 28:2024.12.04.626881. doi: 10.1101/2024.12.04.626881.
6
Targeting miR-181a/b in retinitis pigmentosa: implications for disease progression and therapy.
Cell Biosci. 2024 May 21;14(1):64. doi: 10.1186/s13578-024-01243-3.
8
Age-Related RPE changes in Wildtype C57BL/6J Mice between 2 and 32 Months.
bioRxiv. 2024 Feb 1:2024.01.30.574142. doi: 10.1101/2024.01.30.574142.
9
Spectral Analysis of Human Retinal Pigment Epithelium Cells in Healthy and AMD Eyes.
Invest Ophthalmol Vis Sci. 2024 Jan 2;65(1):10. doi: 10.1167/iovs.65.1.10.

本文引用的文献

1
Barrier properties of cultured retinal pigment epithelium.
Exp Eye Res. 2014 Sep;126:16-26. doi: 10.1016/j.exer.2013.12.018. Epub 2014 Apr 14.
2
Analysis of mouse RPE sheet morphology gives discriminatory categories.
Adv Exp Med Biol. 2014;801:601-7. doi: 10.1007/978-1-4614-3209-8_76.
3
4
Mechanisms of age-related macular degeneration and therapeutic opportunities.
J Pathol. 2014 Jan;232(2):151-64. doi: 10.1002/path.4266.
5
Mechanisms of age-related macular degeneration.
Neuron. 2012 Jul 12;75(1):26-39. doi: 10.1016/j.neuron.2012.06.018.
6
Adhesion failures determine the pattern of choroidal neovascularization in the eye: a computer simulation study.
PLoS Comput Biol. 2012;8(5):e1002440. doi: 10.1371/journal.pcbi.1002440. Epub 2012 May 3.
8
Analysis of the RPE sheet in the rd10 retinal degeneration model.
Adv Exp Med Biol. 2012;723:641-7. doi: 10.1007/978-1-4614-0631-0_81.
9
CellProfiler: free, versatile software for automated biological image analysis.
Biotechniques. 2007 Jan;42(1):71-5. doi: 10.2144/000112257.
10
Mosaicism of the retinal pigment epithelium: seeing the small picture.
Mol Interv. 2005 Aug;5(4):241-9. doi: 10.1124/mi.5.4.7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验