Schotanus Klaas, Soyer Jessica L, Connolly Lanelle R, Grandaubert Jonathan, Happel Petra, Smith Kristina M, Freitag Michael, Stukenbrock Eva H
Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse 10, 35043 Marburg, Germany ; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331-7303 USA ; Christian-Albrechts University of Kiel, Environmental Genomics, Am Botanischen Garten 9-11, 24118 Kiel, Germany ; Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany.
Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse 10, 35043 Marburg, Germany ; INRA, UMR 1290 INRA-AgroParisTech BIOGER, Avenue Lucien Brétignières, Thiverval-Grignon, 78850 France ; Christian-Albrechts University of Kiel, Environmental Genomics, Am Botanischen Garten 9-11, 24118 Kiel, Germany ; Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany.
Epigenetics Chromatin. 2015 Oct 1;8:41. doi: 10.1186/s13072-015-0033-5. eCollection 2015.
Supernumerary chromosomes have been found in many organisms. In fungi, these "accessory" or "dispensable" chromosomes are present at different frequencies in populations and are usually characterized by higher repetitive DNA content and lower gene density when compared to the core chromosomes. In the reference strain of the wheat pathogen, Zymoseptoria tritici, eight discrete accessory chromosomes have been found. So far, no functional role has been assigned to these chromosomes; however, they have existed as separate entities in the karyotypes of Zymoseptoria species over evolutionary time. In this study, we addressed what-if anything-distinguishes the chromatin of accessory chromosomes from core chromosomes. We used chromatin immunoprecipitation combined with high-throughput sequencing ("ChIP-seq") of DNA associated with the centromere-specific histone H3, CENP-A (CenH3), to identify centromeric DNA, and ChIP-seq with antibodies against dimethylated H3K4, trimethylated H3K9 and trimethylated H3K27 to determine the relative distribution and proportion of euchromatin, obligate and facultative heterochromatin, respectively.
Centromeres of the eight accessory chromosomes have the same sequence composition and structure as centromeres of the 13 core chromosomes and they are of similar length. Unlike those of most other fungi, Z. tritici centromeres are not composed entirely of repetitive DNA; some centromeres contain only unique DNA sequences, and bona fide expressed genes are located in regions enriched with CenH3. By fluorescence microscopy, we showed that centromeres of Z. tritici do not cluster into a single chromocenter during interphase. We found dramatically higher enrichment of H3K9me3 and H3K27me3 on the accessory chromosomes, consistent with the twofold higher proportion of repetitive DNA and poorly transcribed genes. In contrast, no single histone modification tested here correlated with the distribution of centromeric nucleosomes.
All centromeres are similar in length and composed of a mixture of unique and repeat DNA, and most contain actively transcribed genes. Centromeres, subtelomeric regions or telomere repeat length cannot account for the differences in transfer fidelity between core and accessory chromosomes, but accessory chromosomes are greatly enriched in nucleosomes with H3K27 trimethylation. Genes on accessory chromosomes appear to be silenced by trimethylation of H3K9 and H3K27.
在许多生物体中都发现了超数染色体。在真菌中,这些“附属”或“可有可无”的染色体在种群中以不同频率存在,与核心染色体相比,通常具有更高的重复DNA含量和更低的基因密度。在小麦病原体小麦壳针孢的参考菌株中,已发现八条离散的附属染色体。到目前为止,尚未确定这些染色体的功能作用;然而,在进化过程中,它们在小麦壳针孢物种的核型中一直作为独立的实体存在。在本研究中,我们探讨了附属染色体的染色质与核心染色体的染色质有何不同(如果有的话)。我们使用染色质免疫沉淀结合与着丝粒特异性组蛋白H3(CENP-A,即CenH3)相关的DNA的高通量测序(“ChIP-seq”)来鉴定着丝粒DNA,并使用针对二甲基化H3K4、三甲基化H3K9和三甲基化H3K27的抗体进行ChIP-seq,以分别确定常染色质、专性和兼性异染色质的相对分布和比例。
八条附属染色体的着丝粒与13条核心染色体的着丝粒具有相同的序列组成和结构,且长度相似。与大多数其他真菌不同,小麦壳针孢的着丝粒并非完全由重复DNA组成;一些着丝粒仅包含独特的DNA序列,并且真正表达的基因位于富含CenH3的区域。通过荧光显微镜观察,我们发现小麦壳针孢的着丝粒在间期不会聚集成单个染色中心。我们发现附属染色体上H3K9me3和H3K27me3的富集程度显著更高,这与重复DNA和转录不良基因的比例高出两倍一致。相比之下,这里测试的任何一种组蛋白修饰都与着丝粒核小体的分布无关。
所有着丝粒长度相似,由独特DNA和重复DNA混合组成,且大多数含有活跃转录的基因。着丝粒、亚端粒区域或端粒重复长度无法解释核心染色体和附属染色体之间转移保真度的差异,但附属染色体上三甲基化H3K27的核小体显著富集。附属染色体上的基因似乎因H3K9和H3K27的三甲基化而沉默。