Suppr超能文献

组蛋白 H3 赖氨酸 27 甲基化导致染色体结构的不稳定性。

Destabilization of chromosome structure by histone H3 lysine 27 methylation.

机构信息

Environmental Genomics, Christian-Albrechts University, Kiel, Germany.

Max Planck Fellow Group Environmental Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany.

出版信息

PLoS Genet. 2019 Apr 22;15(4):e1008093. doi: 10.1371/journal.pgen.1008093. eCollection 2019 Apr.

Abstract

Chromosome and genome stability are important for normal cell function as instability often correlates with disease and dysfunction of DNA repair mechanisms. Many organisms maintain supernumerary or accessory chromosomes that deviate from standard chromosomes. The pathogenic fungus Zymoseptoria tritici has as many as eight accessory chromosomes, which are highly unstable during meiosis and mitosis, transcriptionally repressed, show enrichment of repetitive elements, and enrichment with heterochromatic histone methylation marks, e.g., trimethylation of H3 lysine 9 or lysine 27 (H3K9me3, H3K27me3). To elucidate the role of heterochromatin on genome stability in Z. tritici, we deleted the genes encoding the methyltransferases responsible for H3K9me3 and H3K27me3, kmt1 and kmt6, respectively, and generated a double mutant. We combined experimental evolution and genomic analyses to determine the impact of these deletions on chromosome and genome stability, both in vitro and in planta. We used whole genome sequencing, ChIP-seq, and RNA-seq to compare changes in genome and chromatin structure, and differences in gene expression between mutant and wildtype strains. Analyses of genome and ChIP-seq data in H3K9me3-deficient strains revealed dramatic chromatin reorganization, where H3K27me3 is mostly relocalized into regions that are enriched with H3K9me3 in wild type. Many genome rearrangements and formation of new chromosomes were found in the absence of H3K9me3, accompanied by activation of transposable elements. In stark contrast, loss of H3K27me3 actually increased the stability of accessory chromosomes under normal growth conditions in vitro, even without large scale changes in gene activity. We conclude that H3K9me3 is important for the maintenance of genome stability because it disallows H3K27me3 in regions considered constitutive heterochromatin. In this system, H3K27me3 reduces the overall stability of accessory chromosomes, generating a "metastable" state for these quasi-essential regions of the genome.

摘要

染色体和基因组的稳定性对于正常细胞功能很重要,因为不稳定性通常与 DNA 修复机制的疾病和功能障碍相关。许多生物维持着偏离标准染色体的额外或附加染色体。致病性真菌小麦丝核菌拥有多达 8 条附加染色体,这些染色体在减数分裂和有丝分裂过程中高度不稳定,转录受到抑制,富含重复元件,并富集异染色质组蛋白甲基化标记,例如 H3 赖氨酸 9 或赖氨酸 27 的三甲基化 (H3K9me3、H3K27me3)。为了阐明 Z. tritici 中异染色质对基因组稳定性的作用,我们分别删除了编码负责 H3K9me3 和 H3K27me3 的甲基转移酶的基因 kmt1 和 kmt6,并生成了双突变体。我们结合实验进化和基因组分析,确定这些缺失对染色体和基因组稳定性的影响,包括在体外和体内。我们使用全基因组测序、ChIP-seq 和 RNA-seq 来比较突变体和野生型菌株之间的基因组和染色质结构变化以及基因表达差异。在 H3K9me3 缺失菌株中,对基因组和 ChIP-seq 数据的分析揭示了剧烈的染色质重排,其中 H3K27me3 主要重新定位到在野生型中富含 H3K9me3 的区域。在缺乏 H3K9me3 的情况下,发现了许多基因组重排和新染色体的形成,同时转座元件被激活。与此形成鲜明对比的是,在体外正常生长条件下,即使基因活性没有大规模变化,H3K27me3 的缺失实际上增加了附加染色体的稳定性。我们得出结论,H3K9me3 对于维持基因组稳定性很重要,因为它不允许在被认为是组成型异染色质的区域存在 H3K27me3。在这个系统中,H3K27me3 降低了附加染色体的整体稳定性,为基因组这些准必需区域生成了一种“亚稳态”。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8ee/6510446/f557df747bdf/pgen.1008093.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验