Voß Stephanie, Klewer Laura, Wu Yao-Wen
Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Str. 15, 44227 Dortmund, Germany; Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany.
Chemical Genomics Centre of the Max Planck Society, Otto-Hahn-Str. 15, 44227 Dortmund, Germany; Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany.
Curr Opin Chem Biol. 2015 Oct;28:194-201. doi: 10.1016/j.cbpa.2015.09.003. Epub 2015 Sep 29.
Small-molecule perturbation of biological systems is able to tackle biological problems that are not accessible by classical genetic interference methods. Chemically induced dimerization (CID) has been used as a valuable tool to study various biological processes. Recent years have seen tremendous progress in the development of orthogonal and reversible CID systems. These new systems allow control over protein function with unprecedented precision and spatiotemporal resolution. While the primary application of CID has been on dissecting signal transductions, new emerging approaches have extended the scope of this technique to elucidating membrane and protein trafficking.
生物系统的小分子扰动能够解决经典遗传干扰方法无法触及的生物学问题。化学诱导二聚化(CID)已被用作研究各种生物过程的重要工具。近年来,正交和可逆CID系统的开发取得了巨大进展。这些新系统能够以前所未有的精度和时空分辨率控制蛋白质功能。虽然CID的主要应用一直是剖析信号转导,但新出现的方法已将该技术的范围扩展到阐明膜和蛋白质运输。