Samhaber Robert, Schottdorf Manuel, El Hady Ahmed, Bröking Kai, Daus Andreas, Thielemann Christiane, Stühmer Walter, Wolf Fred
Max-Planck-Institute for Experimental Medicine, Dept. Molecular Biology of Neuronal Signals, Hermann-Rein-Str. 3, 37075 Göttingen, Germany; Max Planck Institute for Dynamics and Self-Organization, Dept. Nonlinear Dynamics, Am Faßberg 17, 37077 Göttingen, Germany; Bernstein Center for Computational Neuroscience, Göttingen, Germany; Bernstein Focus Neurotechnology, Göttingen, Germany; SFB-889 Cellular Mechanisms of Sensory Processing, Göttingen, Germany.
Max-Planck-Institute for Experimental Medicine, Dept. Molecular Biology of Neuronal Signals, Hermann-Rein-Str. 3, 37075 Göttingen, Germany; Max Planck Institute for Dynamics and Self-Organization, Dept. Nonlinear Dynamics, Am Faßberg 17, 37077 Göttingen, Germany; Bernstein Center for Computational Neuroscience, Göttingen, Germany; Bernstein Focus Neurotechnology, Göttingen, Germany.
J Neurosci Methods. 2016 Jan 15;257:194-203. doi: 10.1016/j.jneumeth.2015.09.022. Epub 2015 Oct 1.
Multi-electrode arrays (MEAs) allow non-invasive multi-unit recording in-vitro from cultured neuronal networks. For sufficient neuronal growth and adhesion on such MEAs, substrate preparation is required. Plating of dissociated neurons on a uniformly prepared MEA's surface results in the formation of spatially extended random networks with substantial inter-sample variability. Such cultures are not optimally suited to study the relationship between defined structure and dynamics in neuronal networks. To overcome these shortcomings, neurons can be cultured with pre-defined topology by spatially structured surface modification. Spatially structuring a MEA surface accurately and reproducibly with the equipment of a typical cell-culture laboratory is challenging.
In this paper, we present a novel approach utilizing micro-contact printing (μCP) combined with a custom-made device to accurately position patterns on MEAs with high precision. We call this technique AP-μCP (accurate positioning micro-contact printing).
Other approaches presented in the literature using μCP for patterning either relied on facilities or techniques not readily available in a standard cell culture laboratory, or they did not specify means of precise pattern positioning.
Here we present a relatively simple device for reproducible and precise patterning in a standard cell-culture laboratory setting. The patterned neuronal islands on MEAs provide a basis for high throughput electrophysiology to study the dynamics of single neurons and neuronal networks.
多电极阵列(MEA)可用于在体外对培养的神经网络进行无创多单元记录。为了使神经元在这种MEA上充分生长和附着,需要进行底物制备。将解离的神经元接种在均匀制备的MEA表面上会形成空间扩展的随机网络,且样本间存在很大差异。这种培养方式不太适合研究神经元网络中特定结构与动力学之间的关系。为克服这些缺点,可以通过空间结构化表面修饰以预定义的拓扑结构培养神经元。使用典型细胞培养实验室的设备在MEA表面精确且可重复地进行空间结构化具有挑战性。
在本文中,我们提出了一种新颖的方法,即利用微接触印刷(μCP)结合定制设备在MEA上高精度地准确定位图案。我们将此技术称为AP-μCP(精确定位微接触印刷)。
文献中提出的其他使用μCP进行图案化的方法,要么依赖于标准细胞培养实验室中不易获得的设施或技术,要么未指明精确图案定位的方法。
在此,我们展示了一种相对简单的设备,可在标准细胞培养实验室环境中进行可重复且精确的图案化。MEA上的图案化神经元岛为研究单个神经元和神经元网络的动力学提供了高通量电生理学基础。