Suppr超能文献

用水化学解释细菌芽孢的抗灭菌性

Sterilization Resistance of Bacterial Spores Explained with Water Chemistry.

作者信息

Friedline Anthony W, Zachariah Malcolm M, Middaugh Amy N, Garimella Ravindranath, Vaishampayan Parag A, Rice Charles V

机构信息

Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma , 101 Stephenson Parkway, Norman, Oklahoma 73019, United States.

Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology , M/S 89-108, 4800 Oak Grove Drive, Pasadena, California 91109, United States.

出版信息

J Phys Chem B. 2015 Nov 5;119(44):14033-44. doi: 10.1021/acs.jpcb.5b07437. Epub 2015 Oct 14.

Abstract

Bacterial spores can survive for long periods without nutrients and in harsh environmental conditions. This survival is influenced by the structure of the spore, the presence of protective compounds, and water retention. These compounds, and the physical state of water in particular, allow some species of bacterial spores to survive sterilization schemes with hydrogen peroxide and UV light. The chemical nature of the spore core and its water has been a subject of some contention and the chemical environment of the water impacts resistance paradigms. Either the spore has a glassy core, where water is immobilized along with other core components, or the core is gel-like with mobile water diffusion. These properties affect the movement of peroxide and radical species, and hence resistance. Deuterium solid-state NMR experiments are useful for examining the nature of the water inside the spore. Previous work in our lab with spores of Bacillus subtilis indicate that, for spores, the core water is in a more immobilized state than expected for the gel-like core theory, suggesting a glassy core environment. Here, we report deuterium solid-state NMR observations of the water within UV- and peroxide-resistant spores from Bacillus pumilus SAFR-032. Variable-temperature NMR experiments indicate no change in the line shape after heating to 50 °C, but an overall decrease in signal after heating to 100 °C. These results show glass-like core dynamics within B. pumilus SAFR-032 that may be the potential source of its known UV-resistance properties. The observed NMR traits can be attributed to the presence of an exosporium containing additional labile deuterons that can aid in the deactivation of sterilizing agents.

摘要

细菌芽孢在没有营养物质和恶劣环境条件下能长期存活。这种存活受到芽孢结构、保护性化合物的存在以及水分保持的影响。这些化合物,尤其是水的物理状态,使得某些种类的细菌芽孢能够在过氧化氢和紫外线消毒方案下存活。芽孢核心及其水的化学性质一直存在一些争议,水的化学环境影响抗性模式。要么芽孢有一个玻璃态核心,其中水与其他核心成分一起被固定,要么核心是凝胶状的,水可以移动扩散。这些特性影响过氧化物和自由基的移动,进而影响抗性。氘固态核磁共振实验对于研究芽孢内部水的性质很有用。我们实验室之前对枯草芽孢杆菌芽孢的研究表明,对于芽孢来说,核心水处于比凝胶状核心理论预期更固定的状态,这表明是玻璃态核心环境。在这里,我们报告了来自短小芽孢杆菌SAFR - 032的抗紫外线和抗过氧化物芽孢内水的氘固态核磁共振观察结果。变温核磁共振实验表明,加热到50°C后线形没有变化,但加热到100°C后信号总体下降。这些结果表明短小芽孢杆菌SAFR - 032内存在类似玻璃态的核心动态,这可能是其已知抗紫外线特性的潜在来源。观察到的核磁共振特征可归因于存在一个含有额外不稳定氘核的芽孢外壁,这些氘核有助于使消毒剂失活。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验