Lim Stephen S, Carnahan Emily, Nelson Eugene C, Gillespie Catherine W, Mokdad Ali H, Murray Christopher J L, Fisher Elliott S
Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA 98121 USA.
The Dartmouth Institute for Health Policy and Clinical Practice, Dartmouth Medical School, Lebanon, NH USA.
Popul Health Metr. 2015 Oct 1;13:27. doi: 10.1186/s12963-015-0059-8. eCollection 2015.
Modifiable risks account for a large fraction of disease and death, but clinicians and patients lack tools to identify high risk populations or compare the possible benefit of different interventions.
We used data on the distribution of exposure to 12 major behavioral and biometric risk factors inthe US population, mortality rates by cause, and estimates of the proportional hazards of risk factor exposure from published systematic reviews to develop a risk prediction model that estimates an adult's 10 year mortality risk compared to a population with optimum risk factors. We compared predicted risk to observed mortality in 8,241 respondents in NHANES 1988-1994 and NHANES 1999-2004 with linked mortality data up to the end of 2006.
Predicted risk showed good discrimination with an area under the receiver operating characteristic (ROC) curve of 0.84 (standard error 0.01) for women and 0.84 (SE 0.01) for men. Across deciles of predicted risk, mortality was accurately predicted in men ((Χ (2) statistic = 12.3 for men, p=0.196) but slightly overpredicted in the highest decile among women (Χ (2) statistic = 22.8, p=0.002). Mortality risk was highly concentrated; for example, among those age 30-44 years, 5.1 % (95 % CI 4.1 % - 6.0 %) of the male and 5.9 % (95 % CI 4.8 % - 6.9 %) of the female population accounted for 25 % of the risk of death.
The risk model accurately predicted mortality in a representative sample of the US population and could be used to help inform patient and provider decision-making, identify high risk groups, and monitor the impact of efforts to improve population health.
可改变的风险在疾病和死亡中占很大比例,但临床医生和患者缺乏工具来识别高危人群或比较不同干预措施的潜在益处。
我们利用美国人群中12种主要行为和生物特征风险因素的暴露分布数据、按病因分类的死亡率以及已发表的系统评价中风险因素暴露比例风险的估计值,开发了一种风险预测模型,该模型可估计成年人与具有最佳风险因素的人群相比的10年死亡风险。我们将预测风险与1988 - 1994年美国国家健康和营养检查调查(NHANES)以及1999 - 2004年NHANES中8241名受访者的观察死亡率进行了比较,并将死亡率数据关联至2006年底。
预测风险显示出良好的区分度,女性的受试者工作特征(ROC)曲线下面积为0.84(标准误0.01),男性为0.84(标准误0.01)。在预测风险的十分位数范围内,男性的死亡率得到了准确预测(男性的Χ (2) 统计量 = 12.3,p = 0.196),但在女性的最高十分位数中预测略有高估(Χ (2) 统计量 = 22.8,p = 0.002)。死亡风险高度集中;例如,在30 - 44岁的人群中,5.1%(95%可信区间4.1% - 6.0%)的男性和5.9%(95%可信区间4.8% - 6.9%)的女性人群占死亡风险的25%。
该风险模型准确预测了美国人群代表性样本中的死亡率,可用于帮助指导患者和医疗服务提供者的决策、识别高危群体以及监测改善人群健康措施的影响。