Suppr超能文献

用于提高国家死因数据公共卫生效用的算法。

Algorithms for enhancing public health utility of national causes-of-death data.

机构信息

Institute for Health Metrics and Evaluation, University of Washington, Seattle, Washington, USA.

出版信息

Popul Health Metr. 2010 May 10;8:9. doi: 10.1186/1478-7954-8-9.

Abstract

BACKGROUND

Coverage and quality of cause-of-death (CoD) data varies across countries and time. Valid, reliable, and comparable assessments of trends in causes of death from even the best systems are limited by three problems: a) changes in the International Statistical Classification of Diseases and Related Health Problems (ICD) over time; b) the use of tabulation lists where substantial detail on causes of death is lost; and c) many deaths assigned to causes that cannot or should not be considered underlying causes of death, often called garbage codes (GCs). The Global Burden of Disease Study and the World Health Organization have developed various methods to enhance comparability of CoD data. In this study, we attempt to build on these approaches to enhance the utility of national cause-of-death data for public health analysis.

METHODS

Based on careful consideration of 4,434 country-years of CoD data from 145 countries from 1901 to 2008, encompassing 743 million deaths in ICD versions 1 to 10 as well as country-specific cause lists, we have developed a public health-oriented cause-of-death list. These 56 causes are organized hierarchically and encompass all deaths. Each cause has been mapped from ICD-6 to ICD-10 and, where possible, they have also been mapped to the International List of Causes of Death 1-5. We developed a typology of different classes of GCs. In each ICD revision, GCs have been identified. Target causes to which these GCs should be redistributed have been identified based on certification practice and/or pathophysiology. Proportionate redistribution, statistical models, and expert algorithms have been developed to redistribute GCs to target codes for each age-sex group.

RESULTS

The fraction of all deaths assigned to GCs varies tremendously across countries and revisions of the ICD. In general, across all country-years of data available, GCs have declined from more than 43% in ICD-7 to 24% in ICD-10. In some regions, such as Australasia, GCs in 2005 are as low as 11%, while in some developing countries, such as Thailand, they are greater than 50%. Across different age groups, the composition of GCs varies tremendously - three classes of GCs steadily increase with age, but ambiguous codes within a particular disease chapter are also common for injuries at younger ages. The impact of redistribution is to change the number of deaths assigned to particular causes for a given age-sex group. These changes alter ranks across countries for any given year by a number of different causes, change time trends, and alter the rank order of causes within a country.

CONCLUSIONS

By mapping CoD through different ICD versions and redistributing GCs, we believe the public health utility of CoD data can be substantially enhanced, leading to an increased demand for higher quality CoD data from health sector decision-makers.

摘要

背景

死因(CoD)数据的覆盖范围和质量在各国和不同时期存在差异。即使是最好的系统,对死因趋势进行有效、可靠和可比的评估也受到三个问题的限制:a)国际疾病分类和相关健康问题(ICD)随时间的变化;b)使用制表列表,其中大量死因细节丢失;c)许多死因被分配给不能或不应被视为根本死因的原因,通常称为垃圾代码(GCs)。全球疾病负担研究和世界卫生组织已经开发了各种方法来增强 CoD 数据的可比性。在本研究中,我们试图借鉴这些方法来提高国家死因数据在公共卫生分析中的实用性。

方法

基于对来自 145 个国家 1901 年至 2008 年的 4434 个国家年 CoD 数据的仔细考虑,这些数据涵盖了 ICD 版本 1 至 10 中的 7.43 亿例死亡以及特定国家的死因清单,我们开发了一个面向公共卫生的死因清单。这些 56 个原因按层次结构组织,涵盖了所有死亡。每个死因都已从 ICD-6 映射到 ICD-10,并且在可能的情况下,还已映射到国际死因清单 1-5。我们还开发了一种不同类型的 GCs 的分类法。在每次 ICD 修订中,都确定了 GCs。基于认证实践和/或病理生理学,确定了应将这些 GCs 重新分配给的目标死因。针对每个年龄-性别组,已经开发了按比例重新分配、统计模型和专家算法来重新分配 GCs 到目标代码。

结果

分配给 GCs 的所有死亡比例在国家和 ICD 修订之间差异极大。总体而言,在所有可用的国家年数据中,GCs 的比例从 ICD-7 的 43%以上下降到 ICD-10 的 24%。在一些地区,如澳大拉西亚,2005 年的 GCs 低至 11%,而在一些发展中国家,如泰国,GCs 则超过 50%。在不同的年龄组中,GCs 的构成差异极大 - 三类 GCs 随着年龄的增长而稳步增加,但特定疾病章节中的模糊代码在较年轻的年龄段也很常见。重新分配的影响是改变特定年龄-性别组中特定死因的死亡人数。这些变化通过许多不同的原因改变了特定年份各国的排名、改变了时间趋势,并改变了国家内部死因的排名顺序。

结论

通过在不同的 ICD 版本中映射 CoD 并重新分配 GCs,我们相信 CoD 数据的公共卫生实用性可以大大增强,从而导致卫生部门决策者对更高质量 CoD 数据的需求增加。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7d1/2873308/9c6eb1177a66/1478-7954-8-9-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验