Carballido-Gamio Julio, Bonaretti Serena, Saeed Isra, Harnish Roy, Recker Robert, Burghardt Andrew J, Keyak Joyce H, Harris Tamara, Khosla Sundeep, Lang Thomas F
1 Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA ; 2 Department of Endocrinology, Creighton University, Omaha, NE, USA ; 3 Department of Radiological Sciences, Department of Mechanical and Aerospace Engineering, Department of Biomedical Engineering, and Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA ; 4 Intramural Research Program, National Institute on Aging, Bethesda, Maryland, USA ; 5 Division of Endocrinology, Diabetes, Metabolism and Nutrition, Department of Internal Medicine, College of Medicine, Mayo Clinic, Rochester, MN, USA.
Quant Imaging Med Surg. 2015 Aug;5(4):552-68. doi: 10.3978/j.issn.2223-4292.2015.08.02.
Quantitative computed tomography (QCT) imaging is the basis for multiple assessments of bone quality in the proximal femur, including volumetric bone mineral density (vBMD), tissue volume, estimation of bone strength using finite element modeling (FEM), cortical bone thickness, and computational-anatomy-based morphometry assessments.
Here, we present an automatic framework to perform a multi-parametric QCT quantification of the proximal femur. In this framework, the proximal femur is cropped from the bilateral hip scans, segmented using a multi-atlas based segmentation approach, and then assigned volumes of interest through the registration of a proximal femoral template. The proximal femur is then subjected to compartmental vBMD, compartmental tissue volume, FEM bone strength, compartmental surface-based cortical bone thickness, compartmental surface-based vBMD, local surface-based cortical bone thickness, and local surface-based cortical vBMD computations. Consequently, the template registrations together with vBMD and surface-based cortical bone parametric maps enable computational anatomy studies. The accuracy of the segmentation was validated against manual segmentations of 80 scans from two clinical facilities, while the multi-parametric reproducibility was evaluated using repeat scans with repositioning from 22 subjects obtained on CT imaging systems from two manufacturers.
Accuracy results yielded a mean dice similarity coefficient of 0.976±0.006, and a modified Haussdorf distance of 0.219±0.071 mm. Reproducibility of QCT-derived parameters yielded root mean square coefficients of variation (CVRMS) between 0.89-1.66% for compartmental vBMD; 0.20-1.82% for compartmental tissue volume; 3.51-3.59% for FEM bone strength; 1.89-2.69% for compartmental surface-based cortical bone thickness; and 1.08-2.19% for compartmental surface-based cortical vBMD. For local surface-based assessments, mean CVRMS were between 3.45-3.91% and 2.74-3.15% for cortical bone thickness and vBMD, respectively.
The automatic framework presented here enables accurate and reproducible QCT multi-parametric analyses of the proximal femur. Our subjects were elderly, with scans obtained across multiple clinical sites and manufacturers, thus documenting its value for clinical trials and other multi-site studies.
定量计算机断层扫描(QCT)成像为近端股骨骨质量的多项评估提供了基础,这些评估包括骨体积密度(vBMD)、组织体积、使用有限元模型(FEM)估计骨强度、皮质骨厚度以及基于计算解剖学的形态测量评估。
在此,我们提出了一个用于对近端股骨进行多参数QCT定量分析的自动框架。在这个框架中,从双侧髋部扫描中裁剪出近端股骨,使用基于多图谱的分割方法进行分割,然后通过近端股骨模板的配准来指定感兴趣区域。接着,对近端股骨进行分区vBMD、分区组织体积、FEM骨强度、基于分区表面的皮质骨厚度、基于分区表面的vBMD、基于局部表面的皮质骨厚度以及基于局部表面的皮质vBMD计算。因此,模板配准以及vBMD和基于表面的皮质骨参数图可用于计算解剖学研究。分割的准确性通过与来自两个临床机构的80次扫描的手动分割结果进行对比验证,而多参数可重复性则使用来自两个制造商的CT成像系统对22名受试者进行重新定位后的重复扫描来评估。
准确性结果得出平均骰子相似系数为0.976±0.006,修正豪斯多夫距离为0.219±0.071毫米。QCT衍生参数的可重复性得出分区vBMD的均方根变异系数(CVRMS)在0.89 - 1.66%之间;分区组织体积的CVRMS在0.20 - 1.82%之间;FEM骨强度的CVRMS在3.51 - 3.59%之间;基于分区表面的皮质骨厚度的CVRMS在1.89 - 2.69%之间;基于分区表面的皮质vBMD的CVRMS在1.08 - 2.19%之间。对于基于局部表面的评估,皮质骨厚度和vBMD的平均CVRMS分别在3.45 - 3.91%和2.74 - 3.15%之间。
这里提出的自动框架能够对近端股骨进行准确且可重复的QCT多参数分析。我们的受试者为老年人,扫描数据来自多个临床地点和制造商,从而证明了其在临床试验和其他多地点研究中的价值。