Department of Mathematical Sciences, Michigan Technological University, Houghton, MI, 49931, USA.
Department of Radiological Sciences, Department of Biomedical Engineering, and Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA, USA.
Osteoporos Int. 2024 May;35(5):785-794. doi: 10.1007/s00198-024-07015-6. Epub 2024 Jan 22.
Hip fracture risk assessment is an important but challenging task. Quantitative CT-based patient-specific finite element (FE) analysis (FEA) incorporates bone geometry and bone density in the proximal femur. We developed a global FEA-computed fracture risk index to increase the prediction accuracy of hip fracture incidence.
Quantitative CT-based patient-specific finite element (FE) analysis (FEA) incorporates bone geometry and bone density in the proximal femur to compute the force (fracture load) and energy necessary to break the proximal femur in a particular loading condition. The fracture loads and energies-to-failure are individually associated with incident hip fracture, and provide different structural information about the proximal femur.
We used principal component analysis (PCA) to develop a global FEA-computed fracture risk index that incorporates the FEA-computed yield and ultimate failure loads and energies-to-failure in four loading conditions of 110 hip fracture subjects and 235 age- and sex-matched control subjects from the AGES-Reykjavik study. Using a logistic regression model, we compared the prediction performance for hip fracture based on the stratified resampling.
We referred the first principal component (PC1) of the FE parameters as the global FEA-computed fracture risk index, which was the significant predictor of hip fracture (p-value < 0.001). The area under the receiver operating characteristic curve (AUC) using PC1 (0.776) was higher than that using all FE parameters combined (0.737) in the males (p-value < 0.001).
The global FEA-computed fracture risk index increased hip fracture risk prediction accuracy in males.
基于定量 CT 的患者特定有限元(FE)分析(FEA)纳入了股骨近端的骨几何形状和骨密度,用于计算特定加载条件下导致股骨近端骨折所需的力(骨折载荷)和能量。骨折载荷和失效能量与髋部骨折的发生呈独立相关,并为股骨近端提供了不同的结构信息。
我们使用主成分分析(PCA)来开发一个全局 FEA 计算的骨折风险指数,该指数纳入了 110 例髋部骨折患者和 235 例年龄和性别匹配的对照患者在 4 种加载条件下的 FEA 计算出的屈服和最终失效载荷以及失效能量。使用逻辑回归模型,我们比较了基于分层重采样的髋部骨折预测性能。
我们将 FE 参数的第一主成分(PC1)称为全局 FEA 计算的骨折风险指数,它是髋部骨折的显著预测因子(p 值<0.001)。在男性中,使用 PC1(0.776)的受试者工作特征曲线下面积(AUC)高于使用所有 FE 参数组合(0.737)的 AUC(p 值<0.001)。
全局 FEA 计算的骨折风险指数提高了男性髋部骨折风险预测的准确性。