Suppr超能文献

一种使用交互式3D可视化和Hadoop生态系统的实时脑磁图脑机接口。

A Real-Time Magnetoencephalography Brain-Computer Interface Using Interactive 3D Visualization and the Hadoop Ecosystem.

作者信息

McClay Wilbert A, Yadav Nancy, Ozbek Yusuf, Haas Andy, Attias Hagaii T, Nagarajan Srikantan S

机构信息

Northeastern University and Lawrence Livermore National Laboratory, Boston, MA 02115, USA.

Dataura, Sierra Vista, Arizona, AZ 85635, USA.

出版信息

Brain Sci. 2015 Sep 30;5(4):419-40. doi: 10.3390/brainsci5040419.

Abstract

Ecumenically, the fastest growing segment of Big Data is human biology-related data and the annual data creation is on the order of zetabytes. The implications are global across industries, of which the treatment of brain related illnesses and trauma could see the most significant and immediate effects. The next generation of health care IT and sensory devices are acquiring and storing massive amounts of patient related data. An innovative Brain-Computer Interface (BCI) for interactive 3D visualization is presented utilizing the Hadoop Ecosystem for data analysis and storage. The BCI is an implementation of Bayesian factor analysis algorithms that can distinguish distinct thought actions using magneto encephalographic (MEG) brain signals. We have collected data on five subjects yielding 90% positive performance in MEG mid- and post-movement activity. We describe a driver that substitutes the actions of the BCI as mouse button presses for real-time use in visual simulations. This process has been added into a flight visualization demonstration. By thinking left or right, the user experiences the aircraft turning in the chosen direction. The driver components of the BCI can be compiled into any software and substitute a user's intent for specific keyboard strikes or mouse button presses. The BCI's data analytics OPEN ACCESS Brain. Sci. 2015, 5 420 of a subject's MEG brainwaves and flight visualization performance are stored and analyzed using the Hadoop Ecosystem as a quick retrieval data warehouse.

摘要

从全球范围来看,大数据中增长最快的部分是与人类生物学相关的数据,并且每年的数据创建量达到泽字节级别。其影响涉及各个行业,其中对脑部相关疾病和创伤的治疗可能会产生最显著且直接的影响。下一代医疗保健信息技术和传感设备正在获取并存储大量与患者相关的数据。本文提出了一种用于交互式3D可视化的创新型脑机接口(BCI),该接口利用Hadoop生态系统进行数据分析和存储。该BCI是贝叶斯因子分析算法的一种实现,它能够使用脑磁图(MEG)脑信号来区分不同的思维动作。我们收集了五名受试者的数据,在MEG运动中和运动后的活动中取得了90%的阳性表现。我们描述了一种驱动程序,它可替代BCI的动作,将其作为鼠标按钮按下操作,以便在视觉模拟中实时使用。这个过程已被添加到飞行可视化演示中。通过向左或向右思考,用户可以体验到飞机朝所选方向转弯。BCI的驱动组件可以被编译到任何软件中,替代用户特定的键盘敲击或鼠标按钮按下意图。BCI对受试者MEG脑电波的数据分析以及飞行可视化性能,都使用Hadoop生态系统作为快速检索数据仓库进行存储和分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bb/4701021/b8b8b21d4bb3/brainsci-05-00419-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验