Ben-Yakov Aya, Dudai Yadin, Mayford Mark R
Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel.
Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel Center for Neural Science, New York University, New York, New York 10003.
Cold Spring Harb Perspect Biol. 2015 Oct 5;7(12):a021790. doi: 10.1101/cshperspect.a021790.
Retrieval, the use of learned information, was until recently mostly terra incognita in the neurobiology of memory, owing to shortage of research methods with the spatiotemporal resolution required to identify and dissect fast reactivation or reconstruction of complex memories in the mammalian brain. The development of novel paradigms, model systems, and new tools in molecular genetics, electrophysiology, optogenetics, in situ microscopy, and functional imaging, have contributed markedly in recent years to our ability to investigate brain mechanisms of retrieval. We review selected developments in the study of explicit retrieval in the rodent and human brain. The picture that emerges is that retrieval involves coordinated fast interplay of sparse and distributed corticohippocampal and neocortical networks that may permit permutational binding of representational elements to yield specific representations. These representations are driven largely by the activity patterns shaped during encoding, but are malleable, subject to the influence of time and interaction of the existing memory with novel information.
由于缺乏能够识别和剖析哺乳动物大脑中复杂记忆的快速重新激活或重建所需的时空分辨率的研究方法,直到最近,记忆的提取(即对所学信息的运用)在记忆神经生物学中大多仍是未知领域。近年来,新型范式、模型系统以及分子遗传学、电生理学、光遗传学、原位显微镜和功能成像等新工具的发展,显著提高了我们研究提取脑机制的能力。我们回顾了啮齿动物和人类大脑中显性提取研究的部分进展。呈现出的情况是,提取涉及稀疏和分布式的皮质-海马及新皮质网络的协调快速相互作用,这可能允许表征元素的排列组合绑定以产生特定表征。这些表征在很大程度上由编码过程中形成的活动模式驱动,但具有可塑性,会受到时间以及现有记忆与新信息相互作用的影响。