Suppr超能文献

双色近场超快电子显微镜捕捉到的莫特绝缘体的纳米级飞秒介电响应。

Nanoscale-femtosecond dielectric response of Mott insulators captured by two-color near-field ultrafast electron microscopy.

作者信息

Fu Xuewen, Barantani Francesco, Gargiulo Simone, Madan Ivan, Berruto Gabriele, LaGrange Thomas, Jin Lei, Wu Junqiao, Vanacore Giovanni Maria, Carbone Fabrizio, Zhu Yimei

机构信息

School of Physics, Ultrafast Electron Microscopy Laboratory, Nankai University, Tianjin, 300071, China.

Condensed Matter Physics and Material Science Department, Brookhaven National Laboratory, Upton, NY, 11973, USA.

出版信息

Nat Commun. 2020 Nov 13;11(1):5770. doi: 10.1038/s41467-020-19636-6.

Abstract

Characterizing and controlling the out-of-equilibrium state of nanostructured Mott insulators hold great promises for emerging quantum technologies while providing an exciting playground for investigating fundamental physics of strongly-correlated systems. Here, we use two-color near-field ultrafast electron microscopy to photo-induce the insulator-to-metal transition in a single VO nanowire and probe the ensuing electronic dynamics with combined nanometer-femtosecond resolution (10 m ∙ s). We take advantage of a femtosecond temporal gating of the electron pulse mediated by an infrared laser pulse, and exploit the sensitivity of inelastic electron-light scattering to changes in the material dielectric function. By spatially mapping the near-field dynamics of an individual nanowire of VO, we observe that ultrafast photo-doping drives the system into a metallic state on a timescale of ~150 fs without yet perturbing the crystalline lattice. Due to the high versatility and sensitivity of the electron probe, our method would allow capturing the electronic dynamics of a wide range of nanoscale materials with ultimate spatiotemporal resolution.

摘要

表征和控制纳米结构莫特绝缘体的非平衡态,对新兴量子技术有着巨大的前景,同时为研究强关联系统的基础物理提供了一个令人兴奋的平台。在这里,我们使用双色近场超快电子显微镜在单个VO纳米线中光诱导绝缘体到金属的转变,并以纳米-飞秒组合分辨率(10米·秒)探测随后的电子动力学。我们利用红外激光脉冲介导的电子脉冲的飞秒时间选通,并利用非弹性电子-光散射对材料介电函数变化的敏感性。通过对VO单个纳米线的近场动力学进行空间映射,我们观察到超快光掺杂在约150飞秒的时间尺度上驱动系统进入金属态,而尚未扰动晶格。由于电子探针的高通用性和灵敏度,我们的方法将允许以最终的时空分辨率捕获各种纳米级材料的电子动力学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3600/7666229/f4042f901d2a/41467_2020_19636_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验