Farooq Shazia, Hohlbein Johannes
Laboratory of Biophysics, Wageningen UR, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands.
Phys Chem Chem Phys. 2015 Nov 7;17(41):27862-72. doi: 10.1039/c5cp04137f.
The achievable time resolution of camera-based single-molecule detection is often limited by the frame rate of the camera. Especially in experiments utilizing single-molecule Förster resonance energy transfer (smFRET) to probe conformational dynamics of biomolecules, increasing the frame rate by either pixel-binning or cropping the field of view decreases the number of molecules that can be monitored simultaneously. Here, we present a generalised excitation scheme termed stroboscopic alternating-laser excitation (sALEX) that significantly improves the time resolution without sacrificing highly parallelised detection in total internal reflection fluorescence (TIRF) microscopy. In addition, we adapt a technique known from diffusion-based confocal microscopy to analyse the complex shape of FRET efficiency histograms. We apply both sALEX and dynamic probability distribution analysis (dPDA) to resolve conformational dynamics of interconverting DNA hairpins in the millisecond time range.
基于相机的单分子检测所能达到的时间分辨率通常受相机帧率的限制。特别是在利用单分子荧光共振能量转移(smFRET)来探测生物分子构象动力学的实验中,通过像素合并或裁剪视场来提高帧率会减少可同时监测的分子数量。在此,我们提出一种称为频闪交替激光激发(sALEX)的通用激发方案,该方案在不牺牲全内反射荧光(TIRF)显微镜中高度并行检测的情况下,显著提高了时间分辨率。此外,我们采用一种基于扩散的共聚焦显微镜中已知的技术来分析FRET效率直方图的复杂形状。我们应用sALEX和动态概率分布分析(dPDA)来解析在毫秒时间范围内相互转换的DNA发夹的构象动力学。