Biological Physics Research Group, Department of Physics, University of Oxford, Oxford, United Kingdom.
Biophys J. 2010 Nov 3;99(9):3102-11. doi: 10.1016/j.bpj.2010.09.005.
Single-molecule FRET (smFRET) has long been used as a molecular ruler for the study of biology on the nanoscale (∼2-10 nm); smFRET in total-internal reflection fluorescence (TIRF) Förster resonance energy transfer (TIRF-FRET) microscopy allows multiple biomolecules to be simultaneously studied with high temporal and spatial resolution. To operate at the limits of resolution of the technique, it is essential to investigate and rigorously quantify the major sources of noise and error; we used theoretical predictions, simulations, advanced image analysis, and detailed characterization of DNA standards to quantify the limits of TIRF-FRET resolution. We present a theoretical description of the major sources of noise, which was in excellent agreement with results for short-timescale smFRET measurements (<200 ms) on individual molecules (as opposed to measurements on an ensemble of single molecules). For longer timescales (>200 ms) on individual molecules, and for FRET distributions obtained from an ensemble of single molecules, we observed significant broadening beyond theoretical predictions; we investigated the causes of this broadening. For measurements on individual molecules, analysis of the experimental noise allows us to predict a maximum resolution of a FRET change of 0.08 with 20-ms temporal resolution, sufficient to directly resolve distance differences equivalent to one DNA basepair separation (0.34 nm). For measurements on ensembles of single molecules, we demonstrate resolution of distance differences of one basepair with 1000-ms temporal resolution, and differences of two basepairs with 80-ms temporal resolution. Our work paves the way for ultra-high-resolution TIRF-FRET studies on many biomolecules, including DNA processing machinery (DNA and RNA polymerases, helicases, etc.), the mechanisms of which are often characterized by distance changes on the scale of one DNA basepair.
单分子荧光共振能量转移(smFRET)长期以来一直被用作纳米尺度生物学研究的分子标尺(~2-10nm);全内反射荧光(TIRF)中的 smFRET-Forster 共振能量转移(TIRF-FRET)显微镜允许同时以高时间和空间分辨率研究多个生物分子。为了在技术分辨率的极限下运行,研究和严格量化主要噪声和误差源至关重要;我们使用理论预测、模拟、先进的图像分析和 DNA 标准的详细表征来量化 TIRF-FRET 分辨率的极限。我们提出了主要噪声源的理论描述,该描述与短时间尺度(<200ms)单个分子上的 smFRET 测量(而不是单个分子的集合上的测量)的结果非常吻合。对于单个分子上的较长时间尺度(>200ms)和从单个分子的集合获得的 FRET 分布,我们观察到超出理论预测的显著展宽;我们研究了这种展宽的原因。对于单个分子的测量,对实验噪声的分析使我们能够预测以 20ms 时间分辨率进行 FRET 变化的最大分辨率为 0.08,足以直接分辨相当于一个 DNA 碱基对分离(0.34nm)的距离差异。对于单个分子集合的测量,我们证明了以 1000ms 时间分辨率分辨一个碱基对的距离差异,以及以 80ms 时间分辨率分辨两个碱基对的距离差异。我们的工作为许多生物分子的超高分辨率 TIRF-FRET 研究铺平了道路,包括 DNA 处理机制(DNA 和 RNA 聚合酶、解旋酶等),其机制通常以一个 DNA 碱基对尺度的距离变化为特征。