Department of Applied Mathematics, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan.
Electronics Department, Ming Hsin University of Science and Technology, Hsinchu, 304, Taiwan.
Sci Rep. 2021 Aug 10;11(1):14686. doi: 10.1038/s41598-021-94071-1.
Optimal mass transport (OMT) theory, the goal of which is to move any irregular 3D object (i.e., the brain) without causing significant distortion, is used to preprocess brain tumor datasets for the first time in this paper. The first stage of a two-stage OMT (TSOMT) procedure transforms the brain into a unit solid ball. The second stage transforms the unit ball into a cube, as it is easier to apply a 3D convolutional neural network to rectangular coordinates. Small variations in the local mass-measure stretch ratio among all the brain tumor datasets confirm the robustness of the transform. Additionally, the distortion is kept at a minimum with a reasonable transport cost. The original [Formula: see text] dataset is thus reduced to a cube of [Formula: see text], which is a 76.6% reduction in the total number of voxels, without losing much detail. Three typical U-Nets are trained separately to predict the whole tumor (WT), tumor core (TC), and enhanced tumor (ET) from the cube. An impressive training accuracy of 0.9822 in the WT cube is achieved at 400 epochs. An inverse TSOMT method is applied to the predicted cube to obtain the brain results. The conversion loss from the TSOMT method to the inverse TSOMT method is found to be less than one percent. For training, good Dice scores (0.9781 for the WT, 0.9637 for the TC, and 0.9305 for the ET) can be obtained. Significant improvements in brain tumor detection and the segmentation accuracy are achieved. For testing, postprocessing (rotation) is added to the TSOMT, U-Net prediction, and inverse TSOMT methods for an accuracy improvement of one to two percent. It takes 200 seconds to complete the whole segmentation process on each new brain tumor dataset.
本文首次将最优质量传输 (OMT) 理论应用于脑肿瘤数据集的预处理,其目标是在不造成明显变形的情况下移动任何不规则的 3D 物体(即大脑)。两阶段 OMT (TSOMT) 过程的第一阶段将大脑转换为单位实心球。第二阶段将单位球转换为立方体,因为在矩形坐标上应用 3D 卷积神经网络更容易。所有脑肿瘤数据集之间局部质量测量拉伸比的微小变化证实了变换的稳健性。此外,通过合理的传输成本将失真保持在最低水平。原始 [Formula: see text] 数据集因此被缩减为 [Formula: see text] 的立方体,总共体素数量减少了 76.6%,而不会丢失太多细节。三个典型的 U-Net 分别进行训练,以从立方体中预测整个肿瘤 (WT)、肿瘤核心 (TC) 和增强肿瘤 (ET)。在 400 个 epoch 时,WT 立方体实现了令人印象深刻的 0.9822 的训练准确性。应用逆 TSOMT 方法对预测的立方体进行预测,以获得大脑结果。从 TSOMT 方法到逆 TSOMT 方法的转换损失发现小于 1%。对于训练,可以获得良好的 Dice 分数(WT 为 0.9781,TC 为 0.9637,ET 为 0.9305)。在脑肿瘤检测和分割准确性方面取得了显著的提高。对于测试,在 TSOMT、U-Net 预测和逆 TSOMT 方法中添加后处理(旋转),可以提高 1%到 2%的准确性。在每个新的脑肿瘤数据集上完成整个分割过程需要 200 秒。