Zhang Min, An Dongsheng, Lei Na, Wu Jianfeng, Zhao Tong, Xu Xiaoyin, Wang Yalin, Gu Xianfeng
Zhejiang University.
Department of Computer Science, Stony Brook University, Brookhaven, USA.
Inf Process Med Imaging. 2021 Jun;12729:163-176. doi: 10.1007/978-3-030-78191-0_13. Epub 2021 Jun 14.
Biomarkers play an important role in early detection and intervention in Alzheimer's disease (AD). However, obtaining effective biomarkers for AD is still a big challenge. In this work, we propose to use the worst transportation cost as a univariate biomarker to index cortical morphometry for tracking AD progression. The worst transportation (WT) aims to find the least economical way to transport one measure to the other, which contrasts to the optimal transportation (OT) that finds the most economical way between measures. To compute the WT cost, we generalize the Brenier theorem for the OT map to the WT map, and show that the WT map is the gradient of a concave function satisfying the Monge-Ampere equation. We also develop an efficient algorithm to compute the WT map based on computational geometry. We apply the algorithm to analyze cortical shape difference between dementia due to AD and normal aging individuals. The experimental results reveal the effectiveness of our proposed method which yields better statistical performance than other competiting methods including the OT.
生物标志物在阿尔茨海默病(AD)的早期检测和干预中起着重要作用。然而,获取有效的AD生物标志物仍然是一个巨大的挑战。在这项工作中,我们建议使用最差运输成本作为单变量生物标志物来索引皮质形态测量,以跟踪AD的进展。最差运输(WT)旨在找到将一种测量运输到另一种测量的最不经济的方式,这与在测量之间找到最经济方式的最优运输(OT)形成对比。为了计算WT成本,我们将用于OT映射的布雷尼尔定理推广到WT映射,并表明WT映射是满足蒙日 - 安培方程的凹函数的梯度。我们还基于计算几何开发了一种高效算法来计算WT映射。我们将该算法应用于分析AD所致痴呆症患者与正常衰老个体之间的皮质形状差异。实验结果揭示了我们提出的方法的有效性,该方法比包括OT在内的其他竞争方法具有更好的统计性能。