Borri Alessandro, Panunzi Simona, De Gaetano Andrea
BioMatLab, IASI-CNR, Rome, Italy.
J Math Biol. 2016 Jul;73(1):39-62. doi: 10.1007/s00285-015-0935-7. Epub 2015 Oct 6.
Structured models are population models in which the individuals are characterized with respect to the value of some variable of interest, called the structure variable. In the present paper, we propose a glycemia-structured population model, based on a linear partial differential equation with variable coefficients. The model is characterized by three rate functions: a new-adult population glycemic profile, a glycemia-dependent mortality rate and a glycemia-dependent average worsening rate. First, we formally analyze some properties of the solution, the transient behavior and the equilibrium distribution. Then, we identify the key parameters and functions of the model from real-life data and we hypothesize some plausible modifications of the rate functions to obtain a more beneficial steady-state behavior. The interest of the model is that, while it summarizes the evolution of diabetes in the population in a completely different way with respect to previously published Monte Carlo aggregations of individual-based models, it does appear to offer a good approximation of observed reality and of the features expected in the clinical setting. The model can offer insights in pharmaceutical research and be used to assess possible public health intervention strategies.
结构化模型是种群模型,其中个体根据某个感兴趣的变量(称为结构变量)的值来表征。在本文中,我们基于一个具有可变系数的线性偏微分方程,提出了一个血糖结构化种群模型。该模型由三个速率函数表征:新成年人群体的血糖分布、血糖依赖性死亡率和血糖依赖性平均恶化率。首先,我们正式分析解的一些性质、瞬态行为和平衡分布。然后,我们从实际数据中识别模型的关键参数和函数,并对速率函数进行一些合理的修改,以获得更有益的稳态行为。该模型的意义在于,虽然它以与先前发表的基于个体模型的蒙特卡罗聚合完全不同的方式总结了人群中糖尿病的演变,但它似乎确实为观察到的现实和临床环境中预期的特征提供了一个很好的近似。该模型可以为药物研究提供见解,并用于评估可能的公共卫生干预策略。