Suppr超能文献

使用基于文本分类器的规则专家系统与临床专家,从非结构化的全科医疗临床记录中识别流感样疾病表现。

Identifying influenza-like illness presentation from unstructured general practice clinical narrative using a text classifier rule-based expert system versus a clinical expert.

作者信息

MacRae Jayden, Love Tom, Baker Michael G, Dowell Anthony, Carnachan Matthew, Stubbe Maria, McBain Lynn

机构信息

Patients First, Wellington, New Zealand.

Sapere Research Group, Wellington, New Zealand.

出版信息

BMC Med Inform Decis Mak. 2015 Oct 6;15:78. doi: 10.1186/s12911-015-0201-3.

Abstract

BACKGROUND

We designed and validated a rule-based expert system to identify influenza like illness (ILI) from routinely recorded general practice clinical narrative to aid a larger retrospective research study into the impact of the 2009 influenza pandemic in New Zealand.

METHODS

Rules were assessed using pattern matching heuristics on routine clinical narrative. The system was trained using data from 623 clinical encounters and validated using a clinical expert as a gold standard against a mutually exclusive set of 901 records.

RESULTS

We calculated a 98.2 % specificity and 90.2 % sensitivity across an ILI incidence of 12.4 % measured against clinical expert classification. Peak problem list identification of ILI by clinical coding in any month was 9.2 % of all detected ILI presentations. Our system addressed an unusual problem domain for clinical narrative classification; using notational, unstructured, clinician entered information in a community care setting. It performed well compared with other approaches and domains. It has potential applications in real-time surveillance of disease, and in assisted problem list coding for clinicians.

CONCLUSIONS

Our system identified ILI presentation with sufficient accuracy for use at a population level in the wider research study. The peak coding of 9.2 % illustrated the need for automated coding of unstructured narrative in our study.

摘要

背景

我们设计并验证了一个基于规则的专家系统,用于从常规记录的全科医疗临床记录中识别流感样疾病(ILI),以辅助一项关于2009年流感大流行对新西兰影响的大型回顾性研究。

方法

使用模式匹配启发式方法对常规临床记录中的规则进行评估。该系统使用623次临床会诊的数据进行训练,并以临床专家作为金标准,对901条相互独立的记录进行验证。

结果

根据临床专家分类,在ILI发病率为12.4%的情况下,我们计算出该系统的特异性为98.2%,敏感性为90.2%。通过临床编码在任何月份识别出的ILI问题列表峰值占所有检测到的ILI病例的9.2%。我们的系统解决了临床记录分类中一个不寻常的问题领域;在社区护理环境中使用符号化、非结构化的临床医生录入信息。与其他方法和领域相比,它表现良好。它在疾病实时监测以及临床医生辅助问题列表编码方面具有潜在应用。

结论

我们的系统以足够的准确性识别出ILI病例,可以在更广泛的研究中用于人群层面。9.2%的峰值编码说明了在我们的研究中对非结构化记录进行自动编码的必要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3f7/4596422/9e7f46882302/12911_2015_201_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验