Suppr超能文献

gespeR:一种用于解卷积脱靶混淆RNA干扰筛选的统计模型。

gespeR: a statistical model for deconvoluting off-target-confounded RNA interference screens.

作者信息

Schmich Fabian, Szczurek Ewa, Kreibich Saskia, Dilling Sabrina, Andritschke Daniel, Casanova Alain, Low Shyan Huey, Eicher Simone, Muntwiler Simone, Emmenlauer Mario, Rämö Pauli, Conde-Alvarez Raquel, von Mering Christian, Hardt Wolf-Dietrich, Dehio Christoph, Beerenwinkel Niko

机构信息

Department of Biosystems Science and Engineering, ETH, Zurich, Switzerland.

SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.

出版信息

Genome Biol. 2015 Oct 7;16:220. doi: 10.1186/s13059-015-0783-1.

Abstract

Small interfering RNAs (siRNAs) exhibit strong off-target effects, which confound the gene-level interpretation of RNA interference screens and thus limit their utility for functional genomics studies. Here, we present gespeR, a statistical model for reconstructing individual, gene-specific phenotypes. Using 115,878 siRNAs, single and pooled, from three companies in three pathogen infection screens, we demonstrate that deconvolution of image-based phenotypes substantially improves the reproducibility between independent siRNA sets targeting the same genes. Genes selected and prioritized by gespeR are validated and shown to constitute biologically relevant components of pathogen entry mechanisms and TGF-β signaling. gespeR is available as a Bioconductor R-package.

摘要

小干扰RNA(siRNA)具有很强的脱靶效应,这使得RNA干扰筛选的基因水平解释变得复杂,从而限制了它们在功能基因组学研究中的效用。在此,我们展示了gespeR,一种用于重建个体基因特异性表型的统计模型。我们使用来自三家公司的115,878个单链和混合的siRNA,进行了三项病原体感染筛选,结果表明基于图像的表型反卷积显著提高了针对相同基因的独立siRNA组之间的可重复性。通过gespeR选择并排序的基因得到了验证,并被证明构成了病原体进入机制和转化生长因子-β信号传导的生物学相关组成部分。gespeR可作为一个生物导体R包获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2cab/4597449/bf75fc903af9/13059_2015_783_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验