Palazzolo Martín A, Mascotti María L, Lewkowicz Elizabeth S, Kurina-Sanz Marcela
Area de Química Orgánica, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, INTEQUI-CONICET, 5700, San Luis, Argentina.
Laboratorio de Biología Molecular, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, IMIBIO- SL CONICET, 5700, San Luis, Argentina.
J Ind Microbiol Biotechnol. 2015 Dec;42(12):1581-9. doi: 10.1007/s10295-015-1696-4. Epub 2015 Oct 7.
Aromatic carboxylic acids are readily obtained from lignin in biomass processing facilities. However, efficient technologies for lignin valorization are missing. In this work, a microbial screening was conducted to find versatile biocatalysts capable of transforming several benzoic acids structurally related to lignin, employing vanillic acid as model substrate. The wild-type Aspergillus flavus growing cells exhibited exquisite selectivity towards the oxidative decarboxylation product, 2-methoxybenzene-1,4-diol. Interestingly, when assaying a set of structurally related substrates, the biocatalyst displayed the oxidative removal of the carboxyl moiety or its reduction to the primary alcohol whether electron withdrawing or donating groups were present in the aromatic ring, respectively. Additionally, A. flavus proved to be highly tolerant to vanillic acid increasing concentrations (up to 8 g/L), demonstrating its potential application in chemical synthesis. A. flavus growing cells were found to be efficient biotechnological tools to perform self-sufficient, structure-dependent redox reactions. To the best of our knowledge, this is the first report of a biocatalyst exhibiting opposite redox transformations of the carboxylic acid moiety in benzoic acid derivatives, namely oxidative decarboxylation and carboxyl reduction, in a structure-dependent fashion.
在生物质加工设施中,可从木质素中轻松获得芳香族羧酸。然而,目前缺少有效的木质素增值技术。在这项工作中,进行了微生物筛选,以寻找能够转化几种与木质素结构相关的苯甲酸的多功能生物催化剂,并以香草酸作为模型底物。野生型黄曲霉生长细胞对氧化脱羧产物2-甲氧基苯-1,4-二醇表现出极高的选择性。有趣的是,在检测一组结构相关的底物时,无论芳香环中存在吸电子基团还是供电子基团,该生物催化剂分别表现出羧基部分的氧化去除或其还原为伯醇。此外,黄曲霉被证明对不断增加浓度的香草酸具有高度耐受性(高达8 g/L),这表明其在化学合成中的潜在应用。黄曲霉生长细胞被发现是进行自给自足、结构依赖性氧化还原反应的高效生物技术工具。据我们所知,这是首次报道一种生物催化剂以结构依赖性方式对苯甲酸衍生物中的羧酸部分表现出相反的氧化还原转化,即氧化脱羧和羧基还原。