Giannakidis Archontis, Nyktari Eva, Keegan Jennifer, Pierce Iain, Suman Horduna Irina, Haldar Shouvik, Pennell Dudley J, Mohiaddin Raad, Wong Tom, Firmin David N
Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London, UK.
National Heart and Lung Institute, Imperial College London, London, UK.
Biomed Eng Online. 2015 Oct 7;14:88. doi: 10.1186/s12938-015-0083-8.
Atrial fibrillation (AF) is the most common heart rhythm disorder. In order for late Gd enhancement cardiovascular magnetic resonance (LGE CMR) to ameliorate the AF management, the ready availability of the accurate enhancement segmentation is required. However, the computer-aided segmentation of enhancement in LGE CMR of AF is still an open question. Additionally, the number of centres that have reported successful application of LGE CMR to guide clinical AF strategies remains low, while the debate on LGE CMR's diagnostic ability for AF still holds. The aim of this study is to propose a method that reliably distinguishes enhanced (abnormal) from non-enhanced (healthy) tissue within the left atrial wall of (pre-ablation and 3 months post-ablation) LGE CMR data-sets from long-standing persistent AF patients studied at our centre.
Enhancement segmentation was achieved by employing thresholds benchmarked against the statistics of the whole left atrial blood-pool (LABP). The test-set cross-validation mechanism was applied to determine the input feature representation and algorithm that best predict enhancement threshold levels.
Global normalized intensity threshold levels T PRE = 1 1/4 and T POST = 1 5/8 were found to segment enhancement in data-sets acquired pre-ablation and at 3 months post-ablation, respectively. The segmentation results were corroborated by using visual inspection of LGE CMR brightness levels and one endocardial bipolar voltage map. The measured extent of pre-ablation fibrosis fell within the normal range for the specific arrhythmia phenotype. 3D volume renderings of segmented post-ablation enhancement emulated the expected ablation lesion patterns. By comparing our technique with other related approaches that proposed different threshold levels (although they also relied on reference regions from within the LABP) for segmenting enhancement in LGE CMR data-sets of AF patients, we illustrated that the cut-off levels employed by other centres may not be usable for clinical studies performed in our centre.
The proposed technique has great potential for successful employment in the AF management within our centre. It provides a highly desirable validation of the LGE CMR technique for AF studies. Inter-centre differences in the CMR acquisition protocol and image analysis strategy inevitably impede the selection of a universally optimal algorithm for segmentation of enhancement in AF studies.
心房颤动(AF)是最常见的心律失常。为了使延迟钆增强心血管磁共振成像(LGE CMR)改善房颤管理,需要准确的增强分割结果易于获取。然而,房颤LGE CMR中增强的计算机辅助分割仍是一个悬而未决的问题。此外,报告成功应用LGE CMR指导临床房颤策略的中心数量仍然很少,同时关于LGE CMR对房颤的诊断能力的争论仍在继续。本研究的目的是提出一种方法,该方法能可靠地区分在我们中心研究的长期持续性房颤患者的(消融前和消融后3个月)LGE CMR数据集中左心房壁内增强(异常)组织与未增强(健康)组织。
通过采用以整个左心房血池(LABP)统计数据为基准的阈值来实现增强分割。应用测试集交叉验证机制来确定能最佳预测增强阈值水平的输入特征表示和算法。
发现全局归一化强度阈值水平T PRE = 1 1/4和T POST = 1 5/8分别用于分割消融前和消融后3个月获取的数据集中的增强区域。通过对LGE CMR亮度水平和一个心内膜双极电压图进行视觉检查,证实了分割结果。测量的消融前纤维化范围在特定心律失常表型的正常范围内。分割后的消融后增强区域的三维体积渲染模拟了预期的消融病变模式。通过将我们的技术与其他相关方法进行比较,这些方法提出了不同的阈值水平(尽管它们也依赖于LABP内的参考区域)用于分割房颤患者的LGE CMR数据集,我们表明其他中心采用的截止水平可能不适用于在我们中心进行的临床研究。
所提出的技术在我们中心的房颤管理中具有成功应用的巨大潜力。它为房颤研究中的LGE CMR技术提供了非常理想的验证。CMR采集协议和图像分析策略的中心间差异不可避免地阻碍了在房颤研究中选择普遍最优的增强分割算法。