Bourras Salim, McNally Kaitlin Elyse, Ben-David Roi, Parlange Francis, Roffler Stefan, Praz Coraline Rosalie, Oberhaensli Simone, Menardo Fabrizio, Stirnweis Daniel, Frenkel Zeev, Schaefer Luisa Katharina, Flückiger Simon, Treier Georges, Herren Gerhard, Korol Abraham B, Wicker Thomas, Keller Beat
Institute of Plant Biology, University of Zurich, CH-8008 Zürich, Switzerland.
Institute of Evolution, University of Haifa, Mount Carmel, 31905 Haifa, Israel.
Plant Cell. 2015 Oct;27(10):2991-3012. doi: 10.1105/tpc.15.00171. Epub 2015 Oct 9.
In cereals, several mildew resistance genes occur as large allelic series; for example, in wheat (Triticum aestivum and Triticum turgidum), 17 functional Pm3 alleles confer agronomically important race-specific resistance to powdery mildew (Blumeria graminis). The molecular basis of race specificity has been characterized in wheat, but little is known about the corresponding avirulence genes in powdery mildew. Here, we dissected the genetics of avirulence for six Pm3 alleles and found that three major Avr loci affect avirulence, with a common locus_1 involved in all AvrPm3-Pm3 interactions. We cloned the effector gene AvrPm3(a2/f2) from locus_2, which is recognized by the Pm3a and Pm3f alleles. Induction of a Pm3 allele-dependent hypersensitive response in transient assays in Nicotiana benthamiana and in wheat demonstrated specificity. Gene expression analysis of Bcg1 (encoded by locus_1) and AvrPm3 (a2/f2) revealed significant differences between isolates, indicating that in addition to protein polymorphisms, expression levels play a role in avirulence. We propose a model for race specificity involving three components: an allele-specific avirulence effector, a resistance gene allele, and a pathogen-encoded suppressor of avirulence. Thus, whereas a genetically simple allelic series controls specificity in the plant host, recognition on the pathogen side is more complex, allowing flexible evolutionary responses and adaptation to resistance genes.
在谷类作物中,有几个抗白粉病基因以大的等位基因系列形式存在;例如,在小麦(普通小麦和硬粒小麦)中,17个功能性Pm3等位基因赋予了对白粉病(禾本科布氏白粉菌)具有重要农艺性状的小种特异性抗性。小种特异性的分子基础已在小麦中得到表征,但对于白粉病中相应的无毒基因却知之甚少。在此,我们剖析了六个Pm3等位基因的无毒遗传学,发现三个主要的Avr位点影响无毒,其中一个共同的位点_1参与了所有AvrPm3 - Pm3的互作。我们从位点_2克隆了效应子基因AvrPm3(a2/f2),它能被Pm3a和Pm3f等位基因识别。在本氏烟草和小麦的瞬时试验中诱导Pm3等位基因依赖性超敏反应证明了特异性。对Bcg1(由位点_1编码)和AvrPm3(a2/f2)的基因表达分析揭示了分离株之间的显著差异,表明除了蛋白质多态性外,表达水平在无毒中也起作用。我们提出了一个涉及三个组分的小种特异性模型:一个等位基因特异性无毒效应子、一个抗性基因等位基因和一个病原体编码的无毒抑制子。因此,虽然一个遗传上简单的等位基因系列控制着植物宿主中的特异性,但病原体方面的识别更为复杂,允许灵活的进化反应和对抗性基因的适应。