Gutierrez Gabrielle J, Marder Eve
Volen Center for Complex Systems and Biology Department, Brandeis University, Waltham, Massachusetts 02454.
eNeuro. 2014 Nov-Dec;1(1). doi: 10.1523/ENEURO.0009-14.2014. Epub 2014 Nov 12.
When does neuromodulation of a single neuron influence the output of the entire network? We constructed a five-cell circuit in which a neuron is at the center of the circuit and the remaining neurons form two distinct oscillatory subnetworks. All neurons were modeled as modified Morris-Lecar models with a hyperpolarization-activated conductance ( ) in addition to calcium ( ), potassium ( ), and leak conductances. We determined the effects of varying , , and on the frequency, amplitude, and duty cycle of a single neuron oscillator. The frequency of the single neuron was highest when the and conductances were high and was moderate whereas, in the traditional Morris-Lecar model, the highest frequencies occur when both and are high. We randomly sampled parameter space to find 143 hub oscillators with nearly identical frequencies but with disparate maximal conductance, duty cycles, and burst amplitudes, and then embedded each of these hub neurons into networks with different sets of synaptic parameters. For one set of network parameters, circuit behavior was virtually identical regardless of the underlying conductances of the hub neuron. For a different set of network parameters, circuit behavior varied with the maximal conductances of the hub neuron. This demonstrates that neuromodulation of a single target neuron may dramatically alter the performance of an entire network when the network is in one state, but have almost no effect when the circuit is in a different state.
单个神经元的神经调节何时会影响整个网络的输出?我们构建了一个五细胞电路,其中一个神经元位于电路中心,其余神经元形成两个不同的振荡子网。所有神经元均被建模为改良的Morris-Lecar模型,除了钙电导、钾电导和漏电导外,还具有超极化激活电导( )。我们确定了改变 、 和 对单个神经元振荡器的频率、幅度和占空比的影响。当 和 电导较高且 适中时,单个神经元的频率最高,而在传统的Morris-Lecar模型中,当 和 都较高时频率最高。我们随机采样参数空间,找到143个频率几乎相同但最大电导、占空比和爆发幅度不同的枢纽振荡器,然后将这些枢纽神经元中的每一个嵌入到具有不同突触参数集的网络中。对于一组网络参数,无论枢纽神经元的潜在电导如何,电路行为几乎相同。对于另一组不同的网络参数,电路行为随枢纽神经元的最大电导而变化。这表明,当网络处于一种状态时,对单个目标神经元的神经调节可能会显著改变整个网络的性能,但当电路处于不同状态时几乎没有影响。