Volen Center for Complex Systems and Biology Department, Brandeis University, Waltham, Massachusetts 02454, USA.
J Neurosci. 2013 Aug 7;33(32):13238-48. doi: 10.1523/JNEUROSCI.0937-13.2013.
Rectifying electrical synapses are commonplace, but surprisingly little is known about how rectification alters the dynamics of neuronal networks. In this study, we use computational models to investigate how rectifying electrical synapses change the behavior of a small neuronal network that exhibits complex rhythmic output patterns. We begin with an electrically coupled circuit of three oscillatory neurons with different starting frequencies, and subsequently add two additional neurons and inhibitory chemical synapses. The five-cell model represents a pattern-generating neuronal network with two simultaneous rhythms competing for the recruitment of a hub neuron. We compare four different configurations of rectifying synapse placement and polarity, and we investigate how rectification changes the functional output of this network. Rectification can have a striking effect on the network's sensitivity to alterations of the strengths of the chemical synapses in the network. For some configurations, the rectification makes the circuit dynamics remarkably robust against changes in synaptic strength compared with the nonrectifying case. Based on our findings, we predict that modulation of rectifying electrical synapses could have functional consequences for the neuronal circuits that express them.
电突触的整流现象很常见,但令人惊讶的是,人们对整流如何改变神经元网络的动力学知之甚少。在这项研究中,我们使用计算模型来研究整流电突触如何改变表现出复杂节律输出模式的小型神经元网络的行为。我们从具有不同起始频率的三个振荡神经元的电耦合电路开始,随后添加了两个额外的神经元和抑制性化学突触。五细胞模型代表了一个具有两个同时节律的模式生成神经元网络,它们竞争招募一个中枢神经元。我们比较了整流突触放置和极性的四种不同配置,并研究了整流如何改变网络的功能输出。整流对网络对网络中化学突触强度变化的敏感性可能产生显著影响。对于某些配置,与非整流情况相比,整流使电路动力学对突触强度变化具有惊人的鲁棒性。基于我们的发现,我们预测调节整流电突触可能对表达它们的神经元电路具有功能后果。