Suppr超能文献

热点事件公众舆论的情感扩散:基于复杂网络

Sentiment Diffusion of Public Opinions about Hot Events: Based on Complex Network.

作者信息

Hao Xiaoqing, An Haizhong, Zhang Lijia, Li Huajiao, Wei Guannan

机构信息

School of Humanities and Economic Management, China University of Geosciences, Beijing 100083, China.

School of Humanities and Economic Management, China University of Geosciences, Beijing 100083, China; Key Laboratory of Carrying Capacity Assessment for Resource and Environment, Ministry of Land and Resources, Beijing 100083, China; Lab of Resources and Environmental Management, China University of Geosciences, Beijing 100083, China.

出版信息

PLoS One. 2015 Oct 13;10(10):e0140027. doi: 10.1371/journal.pone.0140027. eCollection 2015.

Abstract

To study the sentiment diffusion of online public opinions about hot events, we collected people's posts through web data mining techniques. We calculated the sentiment value of each post based on a sentiment dictionary. Next, we divided those posts into five different orientations of sentiments: strongly positive (P), weakly positive (p), neutral (o), weakly negative (n), and strongly negative (N). These sentiments are combined into modes through coarse graining. We constructed sentiment mode complex network of online public opinions (SMCOP) with modes as nodes and the conversion relation in chronological order between different types of modes as edges. We calculated the strength, k-plex clique, clustering coefficient and betweenness centrality of the SMCOP. The results show that the strength distribution obeys power law. Most posts' sentiments are weakly positive and neutral, whereas few are strongly negative. There are weakly positive subgroups and neutral subgroups with ppppp and ooooo as the core mode, respectively. Few modes have larger betweenness centrality values and most modes convert to each other with these higher betweenness centrality modes as mediums. Therefore, the relevant person or institutes can take measures to lead people's sentiments regarding online hot events according to the sentiment diffusion mechanism.

摘要

为研究热点事件网络舆情的情感扩散,我们通过网络数据挖掘技术收集了人们的帖子。我们基于情感词典计算了每个帖子的情感值。接下来,我们将这些帖子分为五种不同的情感倾向:强积极(P)、弱积极(p)、中性(o)、弱消极(n)和强消极(N)。通过粗粒度将这些情感组合成模式。我们以模式为节点,以不同类型模式之间按时间顺序的转换关系为边,构建了网络舆情情感模式复杂网络(SMCOP)。我们计算了SMCOP的强度、k-重团、聚类系数和中介中心性。结果表明,强度分布服从幂律。大多数帖子的情感是弱积极和中性的,而强消极的很少。存在分别以ppppp和ooooo为核心模式的弱积极子群和中性子群。很少有模式具有较大的中介中心性值,并且大多数模式以这些具有较高中介中心性的模式为媒介相互转换。因此,相关人员或机构可以根据情感扩散机制采取措施引导人们对网络热点事件的情感。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/250b/4603960/26fd1e19ec71/pone.0140027.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验