Suppr超能文献

结直肠癌风险预测模型:一项系统综述

Risk Prediction Models for Colorectal Cancer: A Systematic Review.

作者信息

Usher-Smith Juliet A, Walter Fiona M, Emery Jon D, Win Aung K, Griffin Simon J

机构信息

The Primary Care Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom.

The Primary Care Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom. Department of General Practice, Melbourne Medical School Faculty of Medicine, Dentistry & Health Sciences The University of Melbourne, Carlton, Victoria, Australia.

出版信息

Cancer Prev Res (Phila). 2016 Jan;9(1):13-26. doi: 10.1158/1940-6207.CAPR-15-0274. Epub 2015 Oct 13.

Abstract

Colorectal cancer is the second leading cause of cancer-related death in Europe and the United States. Survival is strongly related to stage at diagnosis and population-based screening reduces colorectal cancer incidence and mortality. Stratifying the population by risk offers the potential to improve the efficiency of screening. In this systematic review we searched Medline, EMBASE, and the Cochrane Library for primary research studies reporting or validating models to predict future risk of primary colorectal cancer for asymptomatic individuals. A total of 12,808 papers were identified from the literature search and nine through citation searching. Fifty-two risk models were included. Where reported (n = 37), half the models had acceptable-to-good discrimination (the area under the receiver operating characteristic curve, AUROC >0.7) in the derivation sample. Calibration was less commonly assessed (n = 21), but overall acceptable. In external validation studies, 10 models showed acceptable discrimination (AUROC 0.71-0.78). These include two with only three variables (age, gender, and BMI; age, gender, and family history of colorectal cancer). A small number of prediction models developed from case-control studies of genetic biomarkers also show some promise but require further external validation using population-based samples. Further research should focus on the feasibility and impact of incorporating such models into stratified screening programmes.

摘要

结直肠癌是欧美地区癌症相关死亡的第二大主要原因。生存率与诊断时的分期密切相关,基于人群的筛查可降低结直肠癌的发病率和死亡率。按风险对人群进行分层有可能提高筛查效率。在本系统评价中,我们检索了Medline、EMBASE和Cochrane图书馆,查找报告或验证用于预测无症状个体原发性结直肠癌未来风险模型的原始研究。通过文献检索共识别出12,808篇论文,通过引文检索又识别出9篇。共纳入52个风险模型。在推导样本中,据报告(n = 37),一半的模型具有可接受至良好的区分度(受试者工作特征曲线下面积,AUROC>0.7)。校准评估较少(n = 21),但总体可接受。在外部验证研究中,10个模型显示出可接受的区分度(AUROC 0.71 - 0.78)。其中包括两个仅包含三个变量的模型(年龄、性别和BMI;年龄、性别和结直肠癌家族史)。少数从遗传生物标志物病例对照研究中开发的预测模型也显示出一定前景,但需要使用基于人群的样本进行进一步的外部验证。进一步的研究应聚焦于将此类模型纳入分层筛查计划的可行性和影响。

相似文献

1
Risk Prediction Models for Colorectal Cancer: A Systematic Review.结直肠癌风险预测模型:一项系统综述
Cancer Prev Res (Phila). 2016 Jan;9(1):13-26. doi: 10.1158/1940-6207.CAPR-15-0274. Epub 2015 Oct 13.

引用本文的文献

4
[Cancer prevention recommendations: Update 2024].[癌症预防建议:2024年更新]
Aten Primaria. 2024 Nov;56 Suppl 1(Suppl 1):103128. doi: 10.1016/j.aprim.2024.103128.

本文引用的文献

4
Risk prediction models for melanoma: a systematic review.黑色素瘤风险预测模型:一项系统综述。
Cancer Epidemiol Biomarkers Prev. 2014 Aug;23(8):1450-63. doi: 10.1158/1055-9965.EPI-14-0295. Epub 2014 Jun 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验