Hagemeister J, Romming N, von Bergmann K, Vedmedenko E Y, Wiesendanger R
Department of Physics, Institute of Applied Physics and Interdisciplinary Nanoscience Center Hamburg, University of Hamburg, Jungiusstrasse 11, D-20355 Hamburg, Germany.
Nat Commun. 2015 Oct 14;6:8455. doi: 10.1038/ncomms9455.
The switching between topologically distinct skyrmionic and ferromagnetic states has been proposed as a bit operation for information storage. While long lifetimes of the bits are required for data storage devices, the lifetimes of skyrmions have not been addressed so far. Here we show by means of atomistic Monte Carlo simulations that the field-dependent mean lifetimes of the skyrmionic and ferromagnetic states have a high asymmetry with respect to the critical magnetic field, at which these lifetimes are identical. According to our calculations, the main reason for the enhanced stability of skyrmions is a different field dependence of skyrmionic and ferromagnetic activation energies and a lower attempt frequency of skyrmions rather than the height of energy barriers. We use this knowledge to propose a procedure for the determination of effective material parameters and the quantification of the Monte Carlo timescale from the comparison of theoretical and experimental data.
拓扑不同的斯格明子态和铁磁态之间的切换已被提议作为一种用于信息存储的位操作。虽然数据存储设备需要位具有长寿命,但到目前为止,斯格明子的寿命尚未得到研究。在这里,我们通过原子尺度的蒙特卡罗模拟表明,斯格明子态和铁磁态的场依赖平均寿命相对于临界磁场具有高度不对称性,在该临界磁场下,这些寿命是相同的。根据我们的计算,斯格明子稳定性增强的主要原因是斯格明子和铁磁激活能的场依赖性不同以及斯格明子的尝试频率较低,而不是能垒的高度。我们利用这一知识提出了一种程序,用于从理论数据和实验数据的比较中确定有效材料参数并量化蒙特卡罗时间尺度。