Yang Dapeng, Yang Wei, Huang Qi, Liu Hong
IEEE J Biomed Health Inform. 2017 Jan;21(1):134-141. doi: 10.1109/JBHI.2015.2490718. Epub 2015 Oct 14.
To better restore human hand function, advanced hand prostheses should be able to deal with a variety of daily living conditions. In this paper, we addressed myoelectric signal variations introduced by different muscle contractions, dynamic arm movements, and outer interfering forces in the practice of pattern recognition-based myoelectric control schemes. We examined four different training paradigms (data-collection protocols) and quantified their effectiveness for obtaining a robust classification. We further depicted the classification accuracy according to different arm/wrist motion primitives. Our results indicate the training paradigm that collects myoelectric signals on dynamic arm postures and varying muscular contractions (DPDE) can largely mitigate the motions' misclassification rate. The misclassification rate of finger motions seems to highly correlate to wrist pronation and supination, rather than different arm positions. Combining proprioceptive information, such as the hand's orientation, with myoelectric signals for classification only slightly alleviates the misclassification rate.
为了更好地恢复人类手部功能,先进的手部假肢应能够应对各种日常生活状况。在本文中,我们探讨了基于模式识别的肌电控制方案实践中,不同肌肉收缩、手臂动态运动和外部干扰力所引入的肌电信号变化。我们研究了四种不同的训练范式(数据收集协议),并量化了它们在获得稳健分类方面的有效性。我们还根据不同的手臂/手腕运动原语描绘了分类准确率。我们的结果表明,在动态手臂姿势和不同肌肉收缩情况下收集肌电信号的训练范式(DPDE)可以在很大程度上降低运动的误分类率。手指运动的误分类率似乎与手腕的旋前和旋后高度相关,而不是与不同的手臂位置相关。将本体感觉信息(如手部方向)与肌电信号结合用于分类,只能略微降低误分类率。