Suppr超能文献

基于递归聚类消除的支持向量机,用于利用静息态功能和有效脑连接进行疾病状态预测。

Recursive cluster elimination based support vector machine for disease state prediction using resting state functional and effective brain connectivity.

机构信息

Department of Electrical and Computer Engineering, Auburn University MRI Research Center, Auburn University, Auburn, Alabama, United States of America.

出版信息

PLoS One. 2010 Dec 9;5(12):e14277. doi: 10.1371/journal.pone.0014277.

Abstract

BACKGROUND

Brain state classification has been accomplished using features such as voxel intensities, derived from functional magnetic resonance imaging (fMRI) data, as inputs to efficient classifiers such as support vector machines (SVM) and is based on the spatial localization model of brain function. With the advent of the connectionist model of brain function, features from brain networks may provide increased discriminatory power for brain state classification.

METHODOLOGY/PRINCIPAL FINDINGS: In this study, we introduce a novel framework where in both functional connectivity (FC) based on instantaneous temporal correlation and effective connectivity (EC) based on causal influence in brain networks are used as features in an SVM classifier. In order to derive those features, we adopt a novel approach recently introduced by us called correlation-purged Granger causality (CPGC) in order to obtain both FC and EC from fMRI data simultaneously without the instantaneous correlation contaminating Granger causality. In addition, statistical learning is accelerated and performance accuracy is enhanced by combining recursive cluster elimination (RCE) algorithm with the SVM classifier. We demonstrate the efficacy of the CPGC-based RCE-SVM approach using a specific instance of brain state classification exemplified by disease state prediction. Accordingly, we show that this approach is capable of predicting with 90.3% accuracy whether any given human subject was prenatally exposed to cocaine or not, even when no significant behavioral differences were found between exposed and healthy subjects.

CONCLUSIONS/SIGNIFICANCE: The framework adopted in this work is quite general in nature with prenatal cocaine exposure being only an illustrative example of the power of this approach. In any brain state classification approach using neuroimaging data, including the directional connectivity information may prove to be a performance enhancer. When brain state classification is used for disease state prediction, our approach may aid the clinicians in performing more accurate diagnosis of diseases in situations where in non-neuroimaging biomarkers may be unable to perform differential diagnosis with certainty.

摘要

背景

脑状态分类已经使用功能磁共振成像 (fMRI) 数据的体素强度等特征作为高效分类器(如支持向量机 (SVM))的输入来完成,其基于脑功能的空间定位模型。随着脑功能连接模型的出现,脑网络的特征可能为脑状态分类提供更高的辨别能力。

方法/主要发现:在这项研究中,我们引入了一个新的框架,其中基于瞬时时间相关的功能连接 (FC) 和基于脑网络中因果影响的有效连接 (EC) 都用作 SVM 分类器中的特征。为了得出这些特征,我们采用了我们最近提出的一种新方法,称为相关清除 Granger 因果关系 (CPGC),以便在不使瞬时相关污染 Granger 因果关系的情况下,从 fMRI 数据中同时获得 FC 和 EC。此外,通过将递归聚类消除 (RCE) 算法与 SVM 分类器相结合,加速统计学习并提高性能准确性。我们使用疾病状态预测为例的脑状态分类的具体实例来证明基于 CPGC 的 RCE-SVM 方法的有效性。因此,我们表明,即使在暴露组和健康组之间没有发现明显的行为差异,该方法也能够以 90.3%的准确率预测给定的人类受试者是否在产前接触过可卡因。

结论/意义:本工作采用的框架具有很强的通用性,产前可卡因暴露只是该方法的一个说明性实例。在任何使用神经影像学数据的脑状态分类方法中,包括方向连接信息都可能证明是一种性能增强剂。当脑状态分类用于疾病状态预测时,我们的方法可以帮助临床医生在非神经影像学生物标志物可能无法确定地进行鉴别诊断的情况下,更准确地诊断疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee0e/3000328/e9676535fd3b/pone.0014277.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验