Suppr超能文献

分解个体、症状和时间层面抑郁症的异质性:潜在变量模型与多模式主成分分析

Decomposing the heterogeneity of depression at the person-, symptom-, and time-level: latent variable models versus multimode principal component analysis.

作者信息

de Vos Stijn, Wardenaar Klaas J, Bos Elisabeth H, Wit Ernst C, de Jonge Peter

机构信息

University of Groningen, University Medical Center Groningen, Interdisciplinary Center Psychopathology and Emotion regulation (ICPE), (internal mail CC-72), P.O. Box 30.001, 9700 RB, Groningen, The Netherlands.

University of Groningen, Johann Bernoulli Institute of Mathematics and Computer Science, Groningen, The Netherlands.

出版信息

BMC Med Res Methodol. 2015 Oct 15;15:88. doi: 10.1186/s12874-015-0080-4.

Abstract

BACKGROUND

Heterogeneity of psychopathological concepts such as depression hampers progress in research and clinical practice. Latent Variable Models (LVMs) have been widely used to reduce this problem by identification of more homogeneous factors or subgroups. However, heterogeneity exists at multiple levels (persons, symptoms, time) and LVMs cannot capture all these levels and their interactions simultaneously, which leads to incomplete models. Our objective is to briefly review the most widely used LVMs in depression research, illustrating their use and incompatibility in real data, and to consider an alternative, statistical approach, namely multimode principal component analysis (MPCA).

METHODS

We applied LVMs to data from 147 patients, who filled out the Quick Inventory of Depressive Symptomatology (QIDS) at 9 time points. Compatibility of the results and suitability of the LVMs to capture the heterogeneity of the data were evaluated. Alternatively, MPCA was used to simultaneously decompose depression on the person-, symptom- and time-level and to investigate the interactions between these levels.

RESULTS

QIDS-data could be decomposed on the person-level (2 classes), symptom-level (2 factors) and time-level (2 trajectory-classes). However, these results could not be integrated into a single model. Instead, MPCA allowed for decomposition of the data at the person- (3 components), symptom- (2 components) and time-level (2 components) and for the investigation of these components' interactions.

CONCLUSIONS

Traditional LVMs have limited use when trying to define an integrated model of depression heterogeneity at the person, symptom and time level. More integrative statistical techniques such as MPCA can be used to address these relatively complex data patterns and could be used in future attempts to identify empirically-based subtypes/phenotypes of depression.

摘要

背景

诸如抑郁症等精神病理学概念的异质性阻碍了研究和临床实践的进展。潜变量模型(LVMs)已被广泛用于通过识别更同质的因素或亚组来减少这一问题。然而,异质性存在于多个层面(个体、症状、时间),而LVMs无法同时捕捉所有这些层面及其相互作用,这导致模型不完整。我们的目的是简要回顾抑郁症研究中最广泛使用的LVMs,说明它们在实际数据中的应用和不兼容性,并考虑一种替代的统计方法,即多模式主成分分析(MPCA)。

方法

我们将LVMs应用于147名患者的数据,这些患者在9个时间点填写了抑郁症状快速量表(QIDS)。评估了结果的兼容性以及LVMs捕捉数据异质性的适用性。另外,使用MPCA同时在个体、症状和时间层面分解抑郁症,并研究这些层面之间的相互作用。

结果

QIDS数据可以在个体层面(2个类别)、症状层面(2个因素)和时间层面(2个轨迹类别)进行分解。然而,这些结果无法整合到一个单一模型中。相反,MPCA允许在个体层面(3个成分)、症状层面(2个成分)和时间层面(2个成分)对数据进行分解,并研究这些成分之间的相互作用。

结论

在试图定义个体、症状和时间层面抑郁症异质性的综合模型时,传统的LVMs用途有限。更具综合性的统计技术,如MPCA,可用于处理这些相对复杂的数据模式,并可用于未来尝试识别基于实证的抑郁症亚型/表型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd45/4608190/9e1261d0f01d/12874_2015_80_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验