Suppr超能文献

基于数据驱动的重性抑郁障碍亚型:系统综述。

Data-driven subtypes of major depressive disorder: a systematic review.

机构信息

Department of Psychiatry, University Medical Center Groningen, Hanzeplein 1, Groningen, 9713 GZ, The Netherlands.

出版信息

BMC Med. 2012 Dec 4;10:156. doi: 10.1186/1741-7015-10-156.

Abstract

BACKGROUND

According to current classification systems, patients with major depressive disorder (MDD) may have very different combinations of symptoms. This symptomatic diversity hinders the progress of research into the causal mechanisms and treatment allocation. Theoretically founded subtypes of depression such as atypical, psychotic, and melancholic depression have limited clinical applicability. Data-driven analyses of symptom dimensions or subtypes of depression are scarce. In this systematic review, we examine the evidence for the existence of data-driven symptomatic subtypes of depression.

METHODS

We undertook a systematic literature search of MEDLINE, PsycINFO and Embase in May 2012. We included studies analyzing the depression criteria of the Diagnostic and Statistical Manual of Mental Disorders, fourth edition (DSM-IV) of adults with MDD in latent variable analyses.

RESULTS

In total, 1176 articles were retrieved, of which 20 satisfied the inclusion criteria. These reports described a total of 34 latent variable analyses: 6 confirmatory factor analyses, 6 exploratory factor analyses, 12 principal component analyses, and 10 latent class analyses. The latent class techniques distinguished 2 to 5 classes, which mainly reflected subgroups with different overall severity: 62 of 71 significant differences on symptom level were congruent with a latent class solution reflecting severity. The latent class techniques did not consistently identify specific symptom clusters. Latent factor techniques mostly found a factor explaining the variance in the symptoms depressed mood and interest loss (11 of 13 analyses), often complemented by psychomotor retardation or fatigue (8 of 11 analyses). However, differences in found factors and classes were substantial.

CONCLUSIONS

The studies performed to date do not provide conclusive evidence for the existence of depressive symptom dimensions or symptomatic subtypes. The wide diversity of identified factors and classes might result either from the absence of patterns to be found, or from the theoretical and modeling choices preceding analysis.

摘要

背景

根据目前的分类系统,患有重度抑郁症(MDD)的患者可能具有非常不同的症状组合。这种症状的多样性阻碍了对因果机制和治疗分配的研究进展。基于理论的抑郁症亚类,如非典型、精神病性和忧郁性抑郁症,具有有限的临床适用性。对抑郁症症状维度或亚类的基于数据的分析很少。在本系统评价中,我们检查了基于数据的抑郁症症状亚类存在的证据。

方法

我们于 2012 年 5 月对 MEDLINE、PsycINFO 和 Embase 进行了系统文献检索。我们纳入了使用潜在变量分析方法分析成年人 MDD 的《精神障碍诊断与统计手册》第四版(DSM-IV)抑郁标准的研究。

结果

共检索到 1176 篇文章,其中 20 篇符合纳入标准。这些报告共描述了 34 项潜在变量分析:6 项验证性因子分析、6 项探索性因子分析、12 项主成分分析和 10 项潜在类别分析。潜在类别技术区分了 2 到 5 个类别,主要反映了不同总体严重程度的亚组:71 个症状水平上的 62 个显著差异与反映严重程度的潜在类别解决方案一致。潜在类别技术并未一致地识别特定的症状聚类。潜在因子技术主要发现了一个解释抑郁情绪和兴趣丧失症状方差的因子(13 项分析中的 11 项),通常辅以运动迟缓和疲劳(11 项分析中的 8 项)。然而,所发现的因子和类别之间存在显著差异。

结论

迄今为止进行的研究并未为抑郁症症状维度或症状亚类的存在提供确凿的证据。所识别的因子和类别的多样性可能要么是因为没有可发现的模式,要么是因为分析前的理论和建模选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aeee/3566979/1ca3489fafd7/1741-7015-10-156-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验