INRA, UMR1402 ECOSYS, F-78850 Thiverval-Grignon, France; AgroParisTech, UMR1402 ECOSYS, F-78850 Thiverval-Grignon, France; Laboratoire Ecologie, Systématique et Evolution, UMR8079, Univ. Paris-Sud/CNRS/AgroParisTech, Université Paris-Sud, F-91405 Orsay, France.
INRA, UMR1402 ECOSYS, F-78850 Thiverval-Grignon, France; AgroParisTech, UMR1402 ECOSYS, F-78850 Thiverval-Grignon, France.
Sci Total Environ. 2016 Jan 15;541:1052-1058. doi: 10.1016/j.scitotenv.2015.10.004. Epub 2015 Nov 11.
Microcystins are the most common cyanotoxins and may be expected wherever blooms of cyanobacteria occur in surface waters. Their persistence both in the irrigation water and in the soil can lead to their transfer and bioaccumulation into agricultural plants. The aim of this work was to investigate microcystin accumulation in Solanum lycopersicum cultivar MicroTom. The plant was exposed to either Microcystis aeruginosa crude extracts containing up to 100 μg eq.MC-LRL(-1) in a soil-plant system for 90 days or pure radiolabeled (14)C-MC-LR in a hydroponic condition for 48 h. Toxin bioaccumulation in the soil and different plant tissues was assessed both by the PP2A inhibition assay and by liquid chromatography-mass spectrometry (LC/MS/MS). After 90 days of exposure, microcystins persisted in the soil and their free extractable concentrations accumulated were very low varying between 1.6 and 3.9 μg eq.MC-LR kg(-1) DW. Free MC-LR was detected only in roots and leaves with concentrations varying between 4.5 and 8.1 μg kg(-1) DW and between 0.29 and 0.55 μg kg(-1) DW, respectively. By using radioactivity ((14)C-MC-LR), the results have reported a growing accumulation of toxins within the organs roots>leaves>stems and allowed them to confirm the absence of MC-LR in fruits after 48 h of exposure. The bioconcentration factor (BCF) was 13.6 in roots, 4.5 in leaves, and 1.4 in stems. On the other hand, the results highlight the presence of two radioactive fractions in different plant tissues. The non-extractable fraction of radioactivity, corresponding to the covalently bound MC-LR, was higher than that of the extractable fraction only in roots and leaves reaching 56% and 71% of the total accumulated toxin, respectively. Therefore, results raise that monitoring programs must monitor the presence of MCs in the irrigation water to avoid the transfer and accumulation of these toxins in crops.
微囊藻毒素是最常见的蓝藻毒素,只要在地表水中出现蓝藻水华,就可能存在。它们在灌溉水中和土壤中的持久性会导致它们转移和生物累积到农业植物中。本工作旨在研究 MicroTom 番茄品种对微囊藻毒素的累积。将植物暴露于土壤-植物系统中含有高达 100μg eq.MC-LRL(-1)的铜绿微囊藻粗提取物中 90 天,或在水培条件下暴露于纯放射性标记 (14)C-MC-LR 中 48 小时。通过 PP2A 抑制测定和液相色谱-质谱联用(LC/MS/MS)评估毒素在土壤和不同植物组织中的生物累积。暴露 90 天后,微囊藻毒素在土壤中仍然存在,其自由可提取浓度非常低,在 1.6 至 3.9μg eq.MC-LR kg(-1)DW 之间。仅在根和叶中检测到游离 MC-LR,浓度分别在 4.5 至 8.1μg kg(-1)DW 和 0.29 至 0.55μg kg(-1)DW 之间。通过使用放射性 ((14)C-MC-LR),结果报告了毒素在器官中的积累增加,根>叶>茎,并证实暴露 48 小时后果实中没有 MC-LR。生物浓缩因子(BCF)在根中为 13.6,在叶中为 4.5,在茎中为 1.4。另一方面,结果突出了两种放射性物质在不同植物组织中的存在。放射性的不可提取部分,对应于共价结合的 MC-LR,仅在根和叶中高于可提取部分,分别达到总累积毒素的 56%和 71%。因此,结果表明监测计划必须监测灌溉水中 MCs 的存在,以避免这些毒素在作物中的转移和积累。