Department of Physics & Astronomy, Louisiana State University, Baton Rouge, LA 70803.
Condensed Matter Physics & Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973.
Proc Natl Acad Sci U S A. 2018 Sep 18;115(38):9485-9490. doi: 10.1073/pnas.1808812115. Epub 2018 Aug 13.
Extended defects are known to have critical influences in achieving desired material performance. However, the nature of extended defect generation is highly elusive due to the presence of multiple nucleation mechanisms with close energetics. A strategy to design extended defects in a simple and clean way is thus highly desirable to advance the understanding of their role, improve material quality, and serve as a unique playground to discover new phenomena. In this work, we report an approach to create planar extended defects-antiphase boundaries (APB) -with well-defined origins via the combination of advanced growth, atomic-resolved electron microscopy, first-principals calculations, and defect theory. In LaSrMnO thin film grown on SrRuO substrate, APBs in the film naturally nucleate at the step on the substrate/film interface. For a single step, the generated APBs tend to be nearly perpendicular to the interface and propragate toward the film surface. Interestingly, when two steps are close to each other, two corresponding APBs communicate and merge together, forming a unique triangle-shaped defect domain boundary. Such behavior has been ascribed, in general, to the minimization of the surface energy of the APB. Atomic-resolved electron microscopy shows that these APBs have an intriguing antipolar structure phase, thus having the potential as a general recipe to achieve ferroelectric-like domain walls for high-density nonvolatile memory.
扩展缺陷已知对实现所需的材料性能具有关键影响。然而,由于存在多个具有相近能量的成核机制,扩展缺陷的产生本质非常难以捉摸。因此,设计简单且干净的扩展缺陷(反相畴界 (APB))的策略非常可取,这有助于深入了解它们的作用,提高材料质量,并成为发现新现象的独特平台。在这项工作中,我们报告了一种通过先进的生长、原子分辨电子显微镜、第一性原理计算和缺陷理论相结合来创建具有明确定义起源的平面扩展缺陷-反相畴界 (APB) 的方法。在 SrRuO 衬底上生长的 LaSrMnO 薄膜中,APB 在薄膜/衬底界面上的台阶处自然成核。对于单个台阶,生成的 APB 往往几乎垂直于界面并向薄膜表面扩展。有趣的是,当两个台阶彼此靠近时,两个对应的 APB 会相互通信并合并在一起,形成一个独特的三角形缺陷畴界。这种行为通常归因于 APB 表面能的最小化。原子分辨电子显微镜显示,这些 APB 具有有趣的反极相结构,因此有可能成为实现高密度非易失性存储器中类似铁电畴壁的通用方法。