Li Huiliang, Richardson William D
Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK.
Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK.
Brain Res. 2016 Jun 15;1641(Pt A):111-121. doi: 10.1016/j.brainres.2015.10.013. Epub 2015 Oct 22.
Myelin is a specialized subcellular structure that evolved uniquely in vertebrates. A myelinated axon conducts action potentials many times faster than an unmyelinated axon of the same diameter; for the same conduction speed, the unmyelinated axon would need a much larger diameter and volume than its myelinated counterpart. Hence myelin speeds information transfer and saves space, allowing the evolution of a powerful yet portable brain. Myelination in the central nervous system (CNS) is controlled by a gene regulatory program that features a number of master transcriptional regulators including Olig1, Olig2 and Myrf. Olig family genes evolved from a single ancestral gene in non-chordates. Olig2, which executes multiple functions with regard to oligodendrocyte identity and development in vertebrates, might have evolved functional versatility through post-translational modification, especially phosphorylation, as illustrated by its evolutionarily conserved serine/threonine phospho-acceptor sites and its accumulation of serine residues during more recent stages of vertebrate evolution. Olig1, derived from a duplicated copy of Olig2 in early bony fish, is involved in oligodendrocyte development and is critical to remyelination in bony vertebrates, but is lost in birds. The origin of Myrf orthologs might be the result of DNA integration between an invading phage or bacterium and an early protist, producing a fusion protein capable of self-cleavage and DNA binding. Myrf seems to have adopted new functions in early vertebrates - initiation of the CNS myelination program as well as the maintenance of mature oligodendrocyte identity and myelin structure - by developing new ways to interact with DNA motifs specific to myelin genes. This article is part of a Special Issue entitled SI: Myelin Evolution.
髓磷脂是一种在脊椎动物中独特进化而来的特殊亚细胞结构。有髓轴突传导动作电位的速度比相同直径的无髓轴突快很多倍;对于相同的传导速度,无髓轴突的直径和体积需要比其有髓对应物大得多。因此,髓磷脂加快了信息传递并节省了空间,使得功能强大且便于携带的大脑得以进化。中枢神经系统(CNS)中的髓鞘形成由一个基因调控程序控制,该程序具有许多主要转录调节因子,包括少突胶质细胞转录因子1(Olig1)、少突胶质细胞转录因子2(Olig2)和髓鞘转录因子(Myrf)。Olig家族基因起源于非脊索动物中的一个单一祖先基因。Olig2在脊椎动物少突胶质细胞的特性和发育方面执行多种功能,它可能通过翻译后修饰,尤其是磷酸化,进化出了功能多样性,这从其进化上保守的丝氨酸/苏氨酸磷酸化接受位点以及在脊椎动物进化的较近期阶段丝氨酸残基的积累可以看出。Olig1源自早期硬骨鱼中Olig2的一个复制拷贝,参与少突胶质细胞的发育,对硬骨脊椎动物的髓鞘再生至关重要,但在鸟类中丢失。Myrf直系同源物的起源可能是入侵噬菌体或细菌与早期原生生物之间DNA整合的结果,产生了一种能够自我切割和结合DNA的融合蛋白。Myrf似乎在早期脊椎动物中通过开发与髓鞘基因特有的DNA基序相互作用的新方式,采用了新的功能——启动中枢神经系统髓鞘形成程序以及维持成熟少突胶质细胞的特性和髓鞘结构。本文是名为“髓鞘进化”特刊的一部分。