Suppr超能文献

中枢神经系统髓鞘基因调控程序的演化。

Evolution of the CNS myelin gene regulatory program.

作者信息

Li Huiliang, Richardson William D

机构信息

Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK.

Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK.

出版信息

Brain Res. 2016 Jun 15;1641(Pt A):111-121. doi: 10.1016/j.brainres.2015.10.013. Epub 2015 Oct 22.

Abstract

Myelin is a specialized subcellular structure that evolved uniquely in vertebrates. A myelinated axon conducts action potentials many times faster than an unmyelinated axon of the same diameter; for the same conduction speed, the unmyelinated axon would need a much larger diameter and volume than its myelinated counterpart. Hence myelin speeds information transfer and saves space, allowing the evolution of a powerful yet portable brain. Myelination in the central nervous system (CNS) is controlled by a gene regulatory program that features a number of master transcriptional regulators including Olig1, Olig2 and Myrf. Olig family genes evolved from a single ancestral gene in non-chordates. Olig2, which executes multiple functions with regard to oligodendrocyte identity and development in vertebrates, might have evolved functional versatility through post-translational modification, especially phosphorylation, as illustrated by its evolutionarily conserved serine/threonine phospho-acceptor sites and its accumulation of serine residues during more recent stages of vertebrate evolution. Olig1, derived from a duplicated copy of Olig2 in early bony fish, is involved in oligodendrocyte development and is critical to remyelination in bony vertebrates, but is lost in birds. The origin of Myrf orthologs might be the result of DNA integration between an invading phage or bacterium and an early protist, producing a fusion protein capable of self-cleavage and DNA binding. Myrf seems to have adopted new functions in early vertebrates - initiation of the CNS myelination program as well as the maintenance of mature oligodendrocyte identity and myelin structure - by developing new ways to interact with DNA motifs specific to myelin genes. This article is part of a Special Issue entitled SI: Myelin Evolution.

摘要

髓磷脂是一种在脊椎动物中独特进化而来的特殊亚细胞结构。有髓轴突传导动作电位的速度比相同直径的无髓轴突快很多倍;对于相同的传导速度,无髓轴突的直径和体积需要比其有髓对应物大得多。因此,髓磷脂加快了信息传递并节省了空间,使得功能强大且便于携带的大脑得以进化。中枢神经系统(CNS)中的髓鞘形成由一个基因调控程序控制,该程序具有许多主要转录调节因子,包括少突胶质细胞转录因子1(Olig1)、少突胶质细胞转录因子2(Olig2)和髓鞘转录因子(Myrf)。Olig家族基因起源于非脊索动物中的一个单一祖先基因。Olig2在脊椎动物少突胶质细胞的特性和发育方面执行多种功能,它可能通过翻译后修饰,尤其是磷酸化,进化出了功能多样性,这从其进化上保守的丝氨酸/苏氨酸磷酸化接受位点以及在脊椎动物进化的较近期阶段丝氨酸残基的积累可以看出。Olig1源自早期硬骨鱼中Olig2的一个复制拷贝,参与少突胶质细胞的发育,对硬骨脊椎动物的髓鞘再生至关重要,但在鸟类中丢失。Myrf直系同源物的起源可能是入侵噬菌体或细菌与早期原生生物之间DNA整合的结果,产生了一种能够自我切割和结合DNA的融合蛋白。Myrf似乎在早期脊椎动物中通过开发与髓鞘基因特有的DNA基序相互作用的新方式,采用了新的功能——启动中枢神经系统髓鞘形成程序以及维持成熟少突胶质细胞的特性和髓鞘结构。本文是名为“髓鞘进化”特刊的一部分。

相似文献

1
Evolution of the CNS myelin gene regulatory program.
Brain Res. 2016 Jun 15;1641(Pt A):111-121. doi: 10.1016/j.brainres.2015.10.013. Epub 2015 Oct 22.
2
The evolution of Olig genes and their roles in myelination.
Neuron Glia Biol. 2008 May;4(2):129-35. doi: 10.1017/S1740925X09990251.
3
Interactive Repression of MYRF Self-Cleavage and Activity in Oligodendrocyte Differentiation by TMEM98 Protein.
J Neurosci. 2018 Nov 14;38(46):9829-9839. doi: 10.1523/JNEUROSCI.0154-18.2018. Epub 2018 Sep 24.
4
Evolution of myelin ultrastructure and the major structural myelin proteins.
Brain Res. 2016 Jun 15;1641(Pt A):43-63. doi: 10.1016/j.brainres.2015.10.037. Epub 2015 Oct 28.
6
MYRF is a membrane-associated transcription factor that autoproteolytically cleaves to directly activate myelin genes.
PLoS Biol. 2013;11(8):e1001625. doi: 10.1371/journal.pbio.1001625. Epub 2013 Aug 13.
7
Ulk4 deficiency leads to hypomyelination in mice.
Glia. 2018 Jan;66(1):175-190. doi: 10.1002/glia.23236. Epub 2017 Oct 16.
8
Akt signals through the mammalian target of rapamycin pathway to regulate CNS myelination.
J Neurosci. 2009 May 27;29(21):6860-70. doi: 10.1523/JNEUROSCI.0232-09.2009.
9
CNS Hypomyelination Disrupts Axonal Conduction and Behavior in Larval Zebrafish.
J Neurosci. 2021 Nov 3;41(44):9099-9111. doi: 10.1523/JNEUROSCI.0842-21.2021. Epub 2021 Sep 20.
10
Knockdown of Lingo1b protein promotes myelination and oligodendrocyte differentiation in zebrafish.
Exp Neurol. 2014 Jan;251:72-83. doi: 10.1016/j.expneurol.2013.11.012. Epub 2013 Nov 18.

引用本文的文献

1
Guardian of myelin and neural Integrity: foxo1a through slc7a11 mitigating oxidative damage in myelin.
Redox Biol. 2025 Jul 12;85:103763. doi: 10.1016/j.redox.2025.103763.
3
Oligodendrogenesis in Evolution, Development and Adulthood.
Glia. 2025 Sep;73(9):1770-1783. doi: 10.1002/glia.70033. Epub 2025 May 15.
4
Long-Term Excessive Alcohol Consumption Enhances Myelination in the Mouse Nucleus Accumbens.
J Neurosci. 2025 Apr 2;45(14):e0280242025. doi: 10.1523/JNEUROSCI.0280-24.2025.
6
Renewal of oligodendrocyte lineage reverses dysmyelination and CNS neurodegeneration through corrected N-acetylaspartate metabolism.
Prog Neurobiol. 2023 Jul;226:102460. doi: 10.1016/j.pneurobio.2023.102460. Epub 2023 May 4.
7
Coordinated Regulation of Myelination by Growth Factor and Amino-acid Signaling Pathways.
Neurosci Bull. 2023 Mar;39(3):453-465. doi: 10.1007/s12264-022-00967-x. Epub 2022 Nov 9.
9
A Glance at the Molecules That Regulate Oligodendrocyte Myelination.
Curr Issues Mol Biol. 2022 May 15;44(5):2194-2216. doi: 10.3390/cimb44050149.

本文引用的文献

1
Transcriptional and Epigenetic Regulation of Oligodendrocyte Development and Myelination in the Central Nervous System.
Cold Spring Harb Perspect Biol. 2015 Jul 1;7(9):a020461. doi: 10.1101/cshperspect.a020461.
2
Olig1 function is required for oligodendrocyte differentiation in the mouse brain.
J Neurosci. 2015 Mar 11;35(10):4386-402. doi: 10.1523/JNEUROSCI.4962-14.2015.
3
How do regulatory networks evolve and expand throughout evolution?
Curr Opin Biotechnol. 2015 Aug;34:180-8. doi: 10.1016/j.copbio.2015.02.001. Epub 2015 Feb 24.
5
Comparative genomics reveals insights into avian genome evolution and adaptation.
Science. 2014 Dec 12;346(6215):1311-20. doi: 10.1126/science.1251385. Epub 2014 Dec 11.
6
Olig3 is not involved in the ventral patterning of spinal cord.
PLoS One. 2014 Oct 28;9(10):e111076. doi: 10.1371/journal.pone.0111076. eCollection 2014.
7
Motor skill learning requires active central myelination.
Science. 2014 Oct 17;346(6207):318-22. doi: 10.1126/science.1254960.
9
Olig1 function is required to repress dlx1/2 and interneuron production in Mammalian brain.
Neuron. 2014 Feb 5;81(3):574-87. doi: 10.1016/j.neuron.2013.11.024.
10
New Olig1 null mice confirm a non-essential role for Olig1 in oligodendrocyte development.
BMC Neurosci. 2014 Jan 14;15:12. doi: 10.1186/1471-2202-15-12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验