Suppr超能文献

利用半导体异质结构中的激子跃迁实现无腔片上光机械学。

Cavity-less on-chip optomechanics using excitonic transitions in semiconductor heterostructures.

作者信息

Okamoto Hajime, Watanabe Takayuki, Ohta Ryuichi, Onomitsu Koji, Gotoh Hideki, Sogawa Tetsuomi, Yamaguchi Hiroshi

机构信息

NTT Basic Research Laboratories, Nippon Telegraph and Telephone Corporation, Atsugi 243-0198, Japan.

Department of Physics, Tohoku University, Sendai, Miyagi 980-8578, Japan.

出版信息

Nat Commun. 2015 Oct 19;6:8478. doi: 10.1038/ncomms9478.

Abstract

The hybridization of semiconductor optoelectronic devices and nanomechanical resonators provides a new class of optomechanical systems in which mechanical motion can be coupled to light without any optical cavities. Such cavity-less optomechanical systems interconnect photons, phonons and electrons (holes) in a highly integrable platform, opening up the development of functional integrated nanomechanical devices. Here we report on a semiconductor modulation-doped heterostructure-cantilever hybrid system, which realizes efficient cavity-less optomechanical transduction through excitons. The opto-piezoelectric backaction from the bound electron-hole pairs enables us to probe excitonic transition simply with a sub-nanowatt power of light, realizing high-sensitivity optomechanical spectroscopy. Detuning the photon energy from the exciton resonance results in self-feedback cooling and amplification of the thermomechanical motion. This cavity-less on-chip coupling enables highly tunable and addressable control of nanomechanical resonators, allowing high-speed programmable manipulation of nanomechanical devices and sensor arrays.

摘要

半导体光电器件与纳米机械谐振器的杂交提供了一类新型的光机械系统,其中机械运动可以在没有任何光学腔的情况下与光耦合。这种无腔光机械系统在一个高度可集成的平台上互连光子、声子和电子(空穴),开启了功能性集成纳米机械设备的发展。在此,我们报道了一种半导体调制掺杂异质结构 - 悬臂混合系统,该系统通过激子实现了高效的无腔光机械转换。束缚的电子 - 空穴对产生的光压电背作用使我们能够仅用亚纳瓦级的光功率探测激子跃迁,实现高灵敏度光机械光谱学。使光子能量与激子共振失谐会导致热机械运动的自反馈冷却和放大。这种无腔片上耦合实现了对纳米机械谐振器的高度可调谐和可寻址控制,允许对纳米机械设备和传感器阵列进行高速可编程操作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4de5/4634130/0134182b1261/ncomms9478-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验