Bednar Jan, Hamiche Ali, Dimitrov Stefan
Université de Grenoble Alpes/CNRS, Laboratoire Interdisciplinaire de Physique, UMR 5588, 140 rue de la Physique, B.P. 87, St. Martin d'Heres, F-38402, France.
Equipe labellisée Ligue contre le Cancer, Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC), UDS, CNRS, INSERM, 1 rue Laurent Fries, B.P. 10142, 67404 Illkirch Cedex, France.
Biochim Biophys Acta. 2016 Mar;1859(3):436-43. doi: 10.1016/j.bbagrm.2015.10.012. Epub 2015 Oct 23.
Linker histones are three domain proteins and consist of a structured (globular) domain, flanked by two likely non-structured NH2- and COOH-termini. The binding of the linker histones to the nucleosome was characterized by different methods in solution. Apparently, the globular domain interacts with the linker DNA and the nucleosome dyad, while the binding of the large and rich in lysines COOH-terminus results in "closing" the linker DNA of the nucleosome and the formation of the "stem" structure. What is the mode of binding of the linker histones within the chromatin fiber remains still elusive. Nonetheless, it is clear that linker histones are essential for both the assembly and maintenance of the condensed chromatin fiber. Interestingly, linker histones are post-translationally modified and how this affects both their binding to chromatin and functions is now beginning to emerge. In addition, linker histones are highly mobile in vivo, but not in vitro. No explanation of this finding is reported for the moment. The higher mobility of the linker histones should, however, have strong impact on their function. Linker histones plays an important role in gene expression regulation and other chromatin related process and their function is predominantly regulated by their posttranslational modifications. However, the detailed mechanism how the linker histones do function remains still not well understood despite numerous efforts. Here we will summarize and analyze the data on the linker histone binding to the nucleosome and the chromatin fiber and will discuss its functional consequences.
连接组蛋白是由三个结构域组成的蛋白质,包括一个结构化(球状)结构域,两侧分别是两个可能无结构的氨基末端和羧基末端。在溶液中,通过不同方法对连接组蛋白与核小体的结合进行了表征。显然,球状结构域与连接DNA和核小体二分体相互作用,而富含赖氨酸的大的羧基末端的结合导致核小体的连接DNA“封闭”并形成“茎”结构。连接组蛋白在染色质纤维中的结合模式仍然难以捉摸。尽管如此,很明显连接组蛋白对于浓缩染色质纤维的组装和维持都是必不可少的。有趣的是,连接组蛋白会进行翻译后修饰,而这如何影响它们与染色质的结合及其功能现在才刚刚开始显现。此外,连接组蛋白在体内具有高度流动性,但在体外则不然。目前尚未报道对这一发现的解释。然而,连接组蛋白较高的流动性应该会对其功能产生重大影响。连接组蛋白在基因表达调控和其他与染色质相关的过程中发挥着重要作用,其功能主要由翻译后修饰调节。然而,尽管进行了大量努力,连接组蛋白发挥功能的详细机制仍未得到很好的理解。在这里,我们将总结和分析关于连接组蛋白与核小体和染色质纤维结合的数据,并讨论其功能后果。