Suppr超能文献

多物种随机反应扩散模型的混合方法。

Hybrid approaches for multiple-species stochastic reaction-diffusion models.

作者信息

Spill Fabian, Guerrero Pilar, Alarcon Tomas, Maini Philip K, Byrne Helen

机构信息

Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, MA 02215, USA ; Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.

Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK.

出版信息

J Comput Phys. 2015 Oct 15;299:429-445. doi: 10.1016/j.jcp.2015.07.002.

Abstract

Reaction-diffusion models are used to describe systems in fields as diverse as physics, chemistry, ecology and biology. The fundamental quantities in such models are individual entities such as atoms and molecules, bacteria, cells or animals, which move and/or react in a stochastic manner. If the number of entities is large, accounting for each individual is inefficient, and often partial differential equation (PDE) models are used in which the stochastic behaviour of individuals is replaced by a description of the averaged, or mean behaviour of the system. In some situations the number of individuals is large in certain regions and small in others. In such cases, a stochastic model may be inefficient in one region, and a PDE model inaccurate in another. To overcome this problem, we develop a scheme which couples a stochastic reaction-diffusion system in one part of the domain with its mean field analogue, i.e. a discretised PDE model, in the other part of the domain. The interface in between the two domains occupies exactly one lattice site and is chosen such that the mean field description is still accurate there. In this way errors due to the flux between the domains are small. Our scheme can account for multiple dynamic interfaces separating multiple stochastic and deterministic domains, and the coupling between the domains conserves the total number of particles. The method preserves stochastic features such as extinction not observable in the mean field description, and is significantly faster to simulate on a computer than the pure stochastic model.

摘要

反应扩散模型用于描述物理学、化学、生态学和生物学等不同领域的系统。此类模型中的基本实体是诸如原子、分子、细菌、细胞或动物等个体,它们以随机方式移动和/或反应。如果实体数量众多,对每个个体进行计算效率低下,因此常使用偏微分方程(PDE)模型,其中个体的随机行为被系统平均行为或平均行为的描述所取代。在某些情况下,某些区域的个体数量众多,而其他区域的个体数量较少。在这种情况下,随机模型在一个区域可能效率低下,而PDE模型在另一个区域可能不准确。为了克服这个问题,我们开发了一种方案,该方案将域的一部分中的随机反应扩散系统与其平均场类似物(即离散化的PDE模型)在域的另一部分中耦合。两个域之间的界面恰好占据一个晶格点,并且选择该界面使得平均场描述在那里仍然准确。通过这种方式,由于域之间的通量引起的误差很小。我们的方案可以考虑分隔多个随机和确定性域的多个动态界面,并且域之间的耦合守恒粒子总数。该方法保留了平均场描述中不可观察到的诸如灭绝等随机特征,并且在计算机上模拟比纯随机模型快得多。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f84/4554296/24d47ddc0ec3/gr001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验