Suppr超能文献

微观与介观反应扩散模拟耦合方法的融合

Convergence of methods for coupling of microscopic and mesoscopic reaction-diffusion simulations.

作者信息

Flegga Mark B, Hellander Stefan, Erban Radek

机构信息

School of Mathematical Sciences, Monash University, Wellington road, Clayton, Melbourne, Australia;

Department of Computer Science, University of California, Santa Barbara, CA 93106-5070 Santa Barbara, USA;

出版信息

J Comput Phys. 2015 May 15;289:1-17. doi: 10.1016/j.jcp.2015.01.030.

Abstract

In this paper, three multiscale methods for coupling of mesoscopic (compartment-based) and microscopic (molecular-based) stochastic reaction-diffusion simulations are investigated. Two of the three methods that will be discussed in detail have been previously reported in the literature; the two-regime method (TRM) and the compartment-placement method (CPM). The third method that is introduced and analysed in this paper is called the ghost cell method (GCM), since it works by constructing a "ghost cell" in which molecules can disappear and jump into the compartment-based simulation. Presented is a comparison of sources of error. The convergent properties of this error are studied as the time step Δ (for updating the molecular-based part of the model) approaches zero. It is found that the error behaviour depends on another fundamental computational parameter , the compartment size in the mesoscopic part of the model. Two important limiting cases, which appear in applications, are considered: (i) Δ → 0 and is fixed; (ii) Δ → 0 and → 0 such that √Δ/ is fixed. The error for previously developed approaches (the TRM and CPM) converges to zero only in the limiting case (ii), but not in case (i). It is shown that the error of the GCM converges in the limiting case (i). Thus the GCM is superior to previous coupling techniques if the mesoscopic description is much coarser than the microscopic part of the model.

摘要

本文研究了三种用于耦合介观(基于区室)和微观(基于分子)随机反应扩散模拟的多尺度方法。将详细讨论的三种方法中的两种此前已在文献中报道;双机制方法(TRM)和区室放置方法(CPM)。本文介绍并分析的第三种方法称为虚拟单元法(GCM),因为它通过构建一个“虚拟单元”来工作,分子可以在其中消失并跳入基于区室的模拟中。给出了误差来源的比较。研究了随着时间步长Δ(用于更新模型的基于分子的部分)趋近于零,该误差的收敛特性。发现误差行为取决于另一个基本计算参数,即模型介观部分的区室大小。考虑了应用中出现的两种重要极限情况:(i)Δ→0且固定;(ii)Δ→0且→0,使得√Δ/固定。先前开发的方法(TRM和CPM)的误差仅在极限情况(ii)下收敛到零,而在情况(i)下不收敛。结果表明,GCM的误差在极限情况(i)下收敛。因此,如果介观描述比模型的微观部分粗糙得多,GCM优于先前的耦合技术。

相似文献

2
The two-regime method for optimizing stochastic reaction-diffusion simulations.两阶段法优化随机反应-扩散模拟。
J R Soc Interface. 2012 May 7;9(70):859-68. doi: 10.1098/rsif.2011.0574. Epub 2011 Oct 19.
3
Multiscale Modeling of Diffusion in a Crowded Environment.拥挤环境中扩散的多尺度建模
Bull Math Biol. 2017 Nov;79(11):2672-2695. doi: 10.1007/s11538-017-0346-6. Epub 2017 Sep 18.
9
Reaction rates for mesoscopic reaction-diffusion kinetics.介观反应扩散动力学的反应速率
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Feb;91(2):023312. doi: 10.1103/PhysRevE.91.023312. Epub 2015 Feb 23.

引用本文的文献

2
10
Spatially extended hybrid methods: a review.空间扩展混合方法:综述。
J R Soc Interface. 2018 Feb;15(139). doi: 10.1098/rsif.2017.0931.

本文引用的文献

1
Multiscale reaction-diffusion simulations with Smoldyn.使用Smoldyn进行多尺度反应扩散模拟。
Bioinformatics. 2015 Jul 15;31(14):2406-8. doi: 10.1093/bioinformatics/btv149. Epub 2015 Mar 18.
2
From molecular dynamics to Brownian dynamics.从分子动力学到布朗动力学。
Proc Math Phys Eng Sci. 2014 Jul 8;470(2167):20140036. doi: 10.1098/rspa.2014.0036.
6
Hybrid spatial Gillespie and particle tracking simulation.混合空间 Gillespie 与粒子追踪模拟。
Bioinformatics. 2012 Sep 15;28(18):i549-i555. doi: 10.1093/bioinformatics/bts384.
8
The two-regime method for optimizing stochastic reaction-diffusion simulations.两阶段法优化随机反应-扩散模拟。
J R Soc Interface. 2012 May 7;9(70):859-68. doi: 10.1098/rsif.2011.0574. Epub 2011 Oct 19.
9
Spatio-temporal correlations can drastically change the response of a MAPK pathway.时空相关性可以极大地改变 MAPK 通路的反应。
Proc Natl Acad Sci U S A. 2010 Feb 9;107(6):2473-8. doi: 10.1073/pnas.0906885107. Epub 2010 Jan 25.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验