Department of Neurobiology and Anatomy, Drexel University College of Medicine , Philadelphia, Pennsylvania 19129.
eNeuro. 2015 Sep 22;2(5). doi: 10.1523/ENEURO.0069-15.2015. eCollection 2015 Sep.
The organization of neural circuits that form the locomotor central pattern generator (CPG) and provide flexor-extensor and left-right coordination of neuronal activity remains largely unknown. However, significant progress has been made in the molecular/genetic identification of several types of spinal interneurons, including V0 (V0D and V0V subtypes), V1, V2a, V2b, V3, and Shox2, among others. The possible functional roles of these interneurons can be suggested from changes in the locomotor pattern generated in mutant mice lacking particular neuron types. Computational modeling of spinal circuits may complement these studies by bringing together data from different experimental studies and proposing the possible connectivity of these interneurons that may define rhythm generation, flexor-extensor interactions on each side of the cord, and commissural interactions between left and right circuits. This review focuses on the analysis of potential architectures of spinal circuits that can reproduce recent results and suggest common explanations for a series of experimental data on genetically identified spinal interneurons, including the consequences of their genetic ablation, and provides important insights into the organization of the spinal CPG and neural control of locomotion.
形成运动中枢模式发生器(CPG)并提供神经元活动的屈肌-伸肌和左右协调的神经回路的组织在很大程度上仍然未知。然而,在几种类型的脊髓中间神经元的分子/遗传鉴定方面已经取得了重大进展,包括 V0(V0D 和 V0V 亚型)、V1、V2a、V2b、V3 和 Shox2 等。从缺乏特定神经元类型的突变小鼠中产生的运动模式的变化可以提示这些中间神经元的可能功能作用。脊髓回路的计算建模可以通过整合来自不同实验研究的数据并提出这些中间神经元的可能连接性来补充这些研究,这些连接性可能定义节律产生、脊髓每一侧的屈肌-伸肌相互作用以及左右回路之间的连合相互作用。这篇综述重点分析了能够再现最近结果的脊髓回路的潜在结构,并为一系列关于基因鉴定的脊髓中间神经元的实验数据提供了共同的解释,包括它们遗传消融的后果,并为脊髓 CPG 的组织和运动的神经控制提供了重要的见解。