Brussee Janneke M, Yeo Tsin W, Lampah Daniel A, Anstey Nicholas M, Duffull Stephen B
Otago Pharmacometrics Group, School of Pharmacy, University of Otago, Dunedin, New Zealand Division of Pharmacology, LACDR, Leiden University, Leiden, The Netherlands.
Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore Insitute of Infectious Disease and Epidemiology, Tan Tock Seng Hospital, Singapore.
Antimicrob Agents Chemother. 2015 Oct 19;60(1):198-205. doi: 10.1128/AAC.01479-15. Print 2016 Jan.
Impaired organ perfusion in severe falciparum malaria arises from microvascular sequestration of parasitized cells and endothelial dysfunction. Endothelial dysfunction in malaria is secondary to impaired nitric oxide (NO) bioavailability, in part due to decreased plasma concentrations of l-arginine, the substrate for endothelial cell NO synthase. We quantified the time course of the effects of adjunctive l-arginine treatment on endothelial function in 73 patients with moderately severe falciparum malaria derived from previous studies. Three groups of 10 different patients received 3 g, 6 g, or 12 g of l-arginine as a half-hour infusion. The remaining 43 received saline placebo. A pharmacokinetic-pharmacodynamic (PKPD) model was developed to describe the time course of changes in exhaled NO concentrations and reactive hyperemia-peripheral arterial tonometry (RH-PAT) index values describing endothelial function and then used to explore optimal dosing regimens for l-arginine. A PK model describing arginine concentrations in patients with moderately severe malaria was extended with two pharmacodynamic biomeasures, the intermediary biochemical step (NO production) and endothelial function (RH-PAT index). A linear model described the relationship between arginine concentrations and exhaled NO. NO concentrations were linearly related to RH-PAT index. Simulations of dosing schedules using this PKPD model predicted that the time within therapeutic range would increase with increasing arginine dose. However, simulations demonstrated that regimens of continuous infusion over longer periods would prolong the time within the therapeutic range even more. The optimal dosing regimen for l-arginine is likely to be administration schedule dependent. Further studies are necessary to characterize the effects of such continuous infusions of l-arginine on NO and microvascular reactivity in severe malaria.
严重恶性疟原虫疟疾中器官灌注受损源于被寄生细胞的微血管隔离和内皮功能障碍。疟疾中的内皮功能障碍继发于一氧化氮(NO)生物利用度受损,部分原因是内皮细胞NO合酶的底物L-精氨酸的血浆浓度降低。我们对先前研究中73例中度严重恶性疟原虫疟疾患者进行了辅助L-精氨酸治疗对内皮功能影响的时间进程量化。三组各10名不同患者接受3g、6g或12g L-精氨酸半小时输注。其余43名患者接受生理盐水安慰剂。建立了药代动力学-药效学(PKPD)模型来描述呼出NO浓度变化的时间进程以及描述内皮功能的反应性充血-外周动脉张力测定(RH-PAT)指数值,然后用于探索L-精氨酸的最佳给药方案。一个描述中度严重疟疾患者精氨酸浓度的PK模型通过两种药效学生物测量方法进行了扩展,即中间生化步骤(NO产生)和内皮功能(RH-PAT指数)。一个线性模型描述了精氨酸浓度与呼出NO之间的关系。NO浓度与RH-PAT指数呈线性相关。使用该PKPD模型对给药方案的模拟预测,治疗范围内的时间会随着精氨酸剂量的增加而增加。然而,模拟表明,更长时间的连续输注方案将使治疗范围内的时间延长得更多。L-精氨酸的最佳给药方案可能取决于给药时间表。有必要进一步研究这种L-精氨酸连续输注对严重疟疾中NO和微血管反应性的影响。