Steiner Jennifer L, Crowell Kristen T, Kimball Scot R, Lang Charles H
Department of Cellular and Molecular Physiology and.
Department of Cellular and Molecular Physiology and Department of Surgery, Pennsylvania State College of Medicine, Hershey, Pennsylvania.
Am J Physiol Endocrinol Metab. 2015 Dec 15;309(12):E981-94. doi: 10.1152/ajpendo.00264.2015. Epub 2015 Oct 20.
Sepsis-induced skeletal muscle atrophy and weakness are due in part to decreased mTORC1-mediated protein synthesis and increased proteolysis via the autophagy-lysosomal system and ubiquitin-proteasome pathway. The REDD1 (regulated in development and DNA damage-1) protein is increased in sepsis and can negatively regulate mTORC1 activity. However, the contribution of REDD1 to the sepsis-induced change in muscle protein synthesis and degradation has not been determined. Sepsis was produced by cecal ligation and puncture in female REDD1(-/-) or wild-type (WT) mice, and end points were assessed 24 h later in gastrocnemius; time-matched, pair-fed controls of each genotype were included. Sepsis increased REDD1 protein 300% in WT mice, whereas REDD1 was absent in REDD1(-/-) muscle. Sepsis decreased protein synthesis and phosphorylation of downstream targets of mTORC1 (S6K1 Thr(389), rpS6 Ser(240/244), 4E-BP1 Ser(65)) in WT but not REDD1(-/-) mice. However, Akt and PRAS40 phosphorylation was suppressed in both sham and septic muscle from REDD1(-/-) mice despite unaltered PDK1, PP2A, or TSC2 expression. Sepsis increased autophagy as indicated by decreased ULK1 Ser(757) phosphorylation and p62 abundance and increased LC3B-II/I in WT mice, whereas these changes were absent in septic REDD1(-/-) mice. Conversely, REDD1 deletion did not prevent the sepsis-induced decrease in IGF-I mRNA or the concomitant increase in IL-6, TNFα, MuRF1, and atrogin1 mRNA expression. Lastly, 5-day survival in a separate set of septic mice did not differ between WT and REDD1(-/-) mice. These data highlight the central role of REDD1 in regulating both protein synthesis and autophagy in skeletal muscle during sepsis.
脓毒症诱导的骨骼肌萎缩和无力部分归因于mTORC1介导的蛋白质合成减少,以及通过自噬 - 溶酶体系统和泛素 - 蛋白酶体途径导致的蛋白水解增加。REDD1(发育和DNA损伤调节因子1)蛋白在脓毒症中表达增加,并且可以负向调节mTORC1活性。然而,REDD1对脓毒症诱导的肌肉蛋白质合成和降解变化的作用尚未确定。通过对雌性REDD1基因敲除(REDD1(-/-))或野生型(WT)小鼠进行盲肠结扎和穿刺来制造脓毒症模型,24小时后评估腓肠肌的终点指标;每种基因型均纳入时间匹配、成对喂养的对照组。脓毒症使WT小鼠的REDD1蛋白增加300%,而REDD1(-/-)小鼠的肌肉中不存在REDD1。脓毒症使WT小鼠而非REDD1(-/-)小鼠的蛋白质合成以及mTORC1下游靶点(S6K1 Thr(389)、rpS6 Ser(240/244)、4E - BP1 Ser(65))的磷酸化水平降低。然而,尽管REDD1(-/-)小鼠的假手术组和脓毒症组肌肉中PDK1、PP2A或TSC2的表达未改变,但Akt和PRAS40的磷酸化在两组中均受到抑制。脓毒症使WT小鼠的自噬增加,表现为ULK1 Ser(757)磷酸化水平降低、p62丰度降低以及LC3B-II/I增加,而脓毒症的REDD1(-/-)小鼠中未出现这些变化。相反,REDD1基因缺失并未阻止脓毒症诱导的IGF-I mRNA减少或伴随的IL-6、TNFα、MuRF1和atrogin1 mRNA表达增加。最后,在另一组脓毒症小鼠中,WT和REDD1(-/-)小鼠的5天生存率没有差异。这些数据突出了REDD1在脓毒症期间调节骨骼肌蛋白质合成和自噬中的核心作用。